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Mayer went on to show that how this analysis that he did the maximum term method. He picked 

up that that particular cluster and the analysis is fully given here that maximized the partition 

function. This is the same as the Lagrangian multiplier, but before that he showed that maximum 

term method is the one that works. 

 

That is sufficient in the limit of infinite size of the system, N going to infinity, total number of 

particles going to infinity, volume going to infinity such that N/V, the ratio of number of 

particles of volume densities fixed. In that limit that maximum term, the distribution ml* this 

distribution that maximizes that is enough. Everything else is redundant. That beautiful analysis 

of maximum term method combined with Lagrangian multiplier. 

 

And he could show that m and Z here, which tells the weight of a cluster that is the undetermined 

in the Lagrangian multiplier, undetermined coefficient. Z is the undetermined coefficient. We 

show later that Z is nothing but fugacity, but if it is there, then lml*= N and then we get n over 



there V and we get a beautiful thing, which is called Mayer cluster expansion. The density is 

lVblZ
l. So now we have a beautiful relation in terms of the cluster integrals bilateral. 

 

And cluster integrals are nothing but those integrals that contain intermolecular interactions. So 

because of the cluster integrals, we have now the connection, we are building that; we made the 

connection with intermolecular interactions and the way. 
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So this is a beautiful stuff, then he went on and go back. So these now write the partition 

function about one particular distribution. So we are talking of distribution of distribution, 

because ml gives the number of clusters of size l and but we have picked up one particular such 

distribution, we call it m*. For example, that can be in a 100 particle system m1 can be 58, m2 

can be 32, m3 can be 12, something like that and they must add up. 

 

So m1 is 58 that means there are 51 monomers, then I say okay there are 12 dimers, then 2 into 

12, 24 particles in that. So 58 + 24 is now 82. Then I have 6 dimers, so that is 18. So I will have 

now 100 or I say I have that is the distribution I have that maximizes. Now when n is not 100, 

but billions of billions, then a distribution I pick up like that is one that is representative of the 

system, then I can go and calculate the partition function. 

 



Once I know the partition function, I get the free energy and then from this partition, I get the 

free energy and from the free energy I can get the pressure, which is dA/dV here and then I can 

show by using these relation ml*VblZ
l I get this thing. So now this is another such cluster 

expansion, which is Mayer's theory. 
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And then further development is done in terms of irreducible cluster integrals because those are 

Vl contains both chain and ring. So you have to break down into rings and chain separately and 

evaluate them separately that has been done for fairly complex number of systems, very large 

number of things and so this is called reduction in terms of irreducible cluster integrals and the 

definitions one can do like 1 is these quantities 1. Then this is called 2. 

 

Now you can see if I have only chains and rings, then 1 and 2 is enough and if I have only 

changed in my system no rings, like in diluted lighter gases, then 1 is enough. What turned out 

now 1 is the second variable coefficient, this become the third variable coefficient. That is the 

beauty of Mayer’s theorem. Now we play the same game how many of these 1 in the system, I 

call that nl and then how many ways I can distribute into the nl. 

 

The same  and then I made the product of the 2 and I get exactly like Mayer partition function 

another expression, which is the story goes that Joseph Mayer could do the earlier these 

derivations, he could do this thing. He could do, he was stuck. He could not go to reducible 



cluster integral and the further development was done by his wife Maria Goeppert Mayer who 

entered to get a Nobel prize, for the nuclear shell theory. 

 

So Maria Goeppert Mayer whom Mayer met in Gottingen and married and brought her to 

Columbia University was instrumental in many, many such, such calculations of combinatories 

and difficult things. 
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So when that Z1 goes on and one can go on to describe the theory of condensation in a beautiful 

way that means one could use these things and one could now show to get the maximum term 

method and one can show from the maximum term method that these 2 things that one does that 

maximum term method gives these ml star, what we already showed is VblZ
l and Z is the 

fugacity and bl one can show is this quantity. 

 

It has exponential scaling, then one goes to ml and since ml goes as bl to the power Zl and since 

bilateral, sorry ml is VblZ
l and V goes as V naught to the power lZl. So you combine and get V 

naught to the power Zl and when fugacity changes such that Z becomes greater than V naught 

inverse, then you suddenly have very large clusters appearing. The system which is shown here 

as a distribution of lml is a versus l, lml is the number of clusters of size l and l is number of 

particles in the cluster as ml. 

 



lml is number of particles in this size of cluster l and that then has this beautiful Mayer's picture 

is that a big large cluster appears in the system and that is the gas-liquid transition. So this is the 

coexistence. This would become the liquid. So Mayer did not quite get there, but he got the 

picture right. His formulation was rather extended to many, many great creations and so there is 

a beautiful scaling also that depicted. This is the plot depicting the distribution of cluster sizes. 
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Then what one does, the next thing was a wonderful thing that is a virial expansion of Mayer’s 

theory. So Mayer then went on to show that in a low density or large volume, he can work his 

theory around and show that the free energy at the partition function and the free energy and 

pressure has an expansion in density, which essentially comes from these 2 things, one is 

pressure is blZ to the power l and density is VblZ
l. So these are two series. 

 

This is series 1 and this is series 2. Now I can eliminate the fugacity from series 1 and 2 and I 

can get a series of pressure in terms of density and that exactly is virial series. That was what was 

done by Mayer and is described here. So we will go now, write down the partition function just 

like this. This is all the binary. This is the ternary. So these are all the binary chain. These things 

2 bonds and just keep these 2 terms nothing else, because this low density or large volume limit. 

 

Then I can do so to this one, this is just ideal gas VN. Then there are how many ways I can have 

the n number of particles get into that dimer; that is N to N – 2 by this and VN – 2 come out, 



because the 2 integrals are here. It is VN– 2 and then I have other one will be 3 particles N to N – 

1, N – 2 by 6 and VN – 3. I am not taking that into account. 

 

So now I can if I take that this quantity, then I can change again origin to 1 and these becomes 1, 

2, this becomes 1, 2. Then this becomes that thing and one I integrate I get V, so then I get these 

kind of things and n is very large. So these can be neglected I get 2 1/ 2 NN V  , then Vn – 1 n2 / 2 

and this integral. Now I define this integral as beta 1 and then I get 2

1 /N V  as this term. 
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Then I go and calculate the free energy from in this lower case, Boltzmann’s constant, then I 

work it out, then this is the ideal gas term, then this is the term that is coming from retaining only 

the chain diagram the dimer and then when I do that, I found that this is all lower case. This is 

the correction that comes to pressure the 1/2V and this v is V/N and then you get, this is the 

correction that comes out, that means pressure PV / NkBT becomes [1-(1/2)] and this we now 

compare this with the virial series, you get 1 + B2 that you will find all these calculations are 

done here and this will be passed on to you. So one gets the first term of the virial series and that 

is a beautiful things that you get now molecular expression. The important thing is a molecular 

expression of the virial series and that is in terms of these series. 

 



So I now have second virial coefficient in terms of 2

0

( )drr f r



 . So this is the second virial 

coefficient and f(r) is ( )( ) 1u rf r e   . So these now tells a way to do the second virial 

coefficient. Now this has played a very, very important role in this particular derivation of 

second virial coefficient with exceedingly important role and this is the following. 
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So now I have a second virial coefficient, which is given in terms LP factor. I am not too 

interested in that 2

0

( )drr f r



  and then I have, okay of course 4 pi and other things are there and 

density. Now u(r), so before this we did not have, we had forms like the Lennard-Jones 

interaction potential, but he did not know how to get them. Quantum calculations, they are far off 

and very difficult, but now suddenly I have a beautiful expression of the second virial 

coefficient. 

 

So I go to equation, I get this part which will be quite nicely given by the second virial 

coefficient. Now I do the temperature dependence of this guy. So I get now second virial 

coefficient temperature dependence. So now I fit it. So by knowing the temperature dependence 

of second virial coefficient experimentally and knowing Mayer’s expression of the second virial 

coefficient in terms of interaction potential, I could now get my, so this was the first time. 

 



So these values of epsilon and values of sigma in the interaction potential, they came out first 

times were calculated by using Mayer’s expression of the second virial coefficient. So Mayer 

expression of second and third virial coefficient and fourth virial coefficient played a very, very 

important role. People started doing a molecular microscopic theory of condensation. They get 

the virial coefficient. Now they see the virial coefficients which were introduced 

phenomenologically. 

(Refer Slide Time: 14:40) 

 

The virial coefficient was introduced because this was written down 

2 3

2 3 41 ...
B

P
B B B

k T
  


     . So these are just virial coefficients, second virial coefficient, 

third virial coefficient, fourth. They are phenomenological. This was virial phenomenologically 

from the experimentally determined equation of state, but now we are told as what is B2 in terms 

of interaction potential. 

 

Mayer told us what is B3 in terms of interaction potential. Now I can go back use Mayer's 

expression and the experimental values of second virial coefficient temperature dependence. I 

can get the interaction potential. So this was the huge significance of this approach, the cluster 

expansion, the Mayer A function, the cluster integrals BL and in the usual contestant beta 1 

which you can work out. They are all done here, was to get the interaction potential. 

 



So then we talked all these days the force fields, all the glory of things to computer simulations. 

We derived very complex systems, but the fast things came out. So the real coefficient is more 

than 100 years old. Even at the time of Mayer, it was 40-50 years old, but one did not know that 

it is coming from interaction coefficient. One can expand Van der Waals equation of state and 

get the virial series, but one found out that does not work. 

 

That means that is why actually A and B was determined, but that did not work well, because 

they are phenomenological. They are not robust, but Mayer’s theory gives us a robust way to 

look into the interaction potential and evaluate and that played extremely important role in our 

development. So even today the values of the force field that we call for argon, the sigma and 

epsilon comes from these kind of things. The epsilon is 119 K that comes from these analyses 

and so there are certain limitations of Mayer’s theory. 
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That this is the ideal gas and this is the Mayer's. Unfortunately, if you do Mayer’s theory, you 

know it kind of gives the condensation, but then it remains flat and there are many, many reasons 

for that and we are not going to go into that in this detail. You can get that in the book. 
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Then there are many studies beautiful, beautiful studies that have been done. So we are talking of 

this finite to the Bell polynomials. The Bell polynomials are a class of generalized polynomials, 

very powerful polynomials which exactly has the same formula, which nobody knew, Mayer did 

not know. We did not know for many years, but the advantage is that if that is so, then they have 

a beautiful recursion relations which we can use now and this is the recursion relation, Bell 

polynomial recursion relation, which now can be used to evaluate Mayer partition function. 
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And that is a beautiful stuff and you get this beautiful relation of Mayer body. So if we can have 

some reasonable cluster integrals, then we can do a good job, but the difference is that these 

problem remain. We made considerable progress, but we did not solve the problem, because the 



reducible clustered integrals are not available. Even today, they are not available. Irreversible 

cluster integrals have been evaluated by great pain and it works out somewhat better for many 

techniques and they are for hard sphere kind of a system when there is no attraction.  

 

It works out within the while, there is a very large number of irreversible cluster integrals. Virial 

coefficient has been evaluated up to 11 and that means beta F. Irreversible cluster integrals of 

beta 10 has been done by Grab theoretical methods, a method that Mayer initiated but for 

Lennard-Jones it has been done only up to some 6 or 7 irreversible cluster integrals, that is not 

enough, because when it goes to liquid phase, then all the particles become connected. So there 

is kind of gel that forms and the Mayer’s theory breaks down, but you know but we should be 

happy with what we got and there are some things that are done. 
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So we will stop here today and there are some old articles that we wrote long, long time ago and 

is described in the book that the applications of Mayer partition function to the real systems and 

so we stop here now. 


