
Basic Statistical Mechanics 

Prof. Biman Bagchi 

Department of Chemistry 

Indian Institute of Technology – Bombay 

 

Lecture – 30 

Cluster Expansion and Mayer’s Theory of Condensation Part-3 

 

We derive PV = RT we derive the CV = 3 / 2 R all these things then we also did the diatomic 

in monatomic we did the entropy which is the Sackur Tetrode equation which is an extremely 

useful as I told you of when we did it we thought useful at all, but I told you that we are using 

it every day like in paper we are writing now on entropy of water, we use this entropy of 

Sackur Tetrode equation that expression we use.  

 

Amazing that how that seemingly innocuous simple expression can be used in a very 

complex situations that is then we did harmonic oscillator and we got an expression for 

entropy of oscillation and that again goes over to entropy of the specific heat of solids for 

Einstein and Debye did, same expression. I am just trying to tell you the rich that you do one 

tiny little thing through statistical mechanics. 

 

There is no other way you can do that this, Einstein or Debye, Einstein theory or specific heat 

comes through this partition function that is what Einstein did, he just calculated the specific 

heat through V to the power – ½ Hµ/ kB T / 1 – e to the power –Hµ/ kB T square, and you 

have a density of states g Ω, then you integrate that. Then we did entropy and specific heat 

and specific heat of, that was did by Einstein, entropy of the vibrational mode is also very 

important.  

 

So when I calculate entropy of solid or free energy of solid, how do I do it? Theoretically, I 

calculate the enthalpy which I can do through computation simulations or I can some kind of 

Madelung constant, remember the summing over all the interactions they charged and 

computer simulation we can do that I take an FCC lattice and I calculate the interaction 

energy by adding up all the interactions. 

 

But then I need the entropy, you would think that entropy of solid is very small not quite. 

Entropy of solid may be significant because of the low frequency oscillations and vibrations 

in many solids, then you again use your entropy from the harmonic oscillators. Your normal 



modes are your harmonic oscillators that is the first thing solid state physics you learn, like 

normal modes in a linear approximation.  

 

These things go very well in linear response theory that is very, very important to understand. 

So free energy of solid if you want to calculate, we just published a paper very long paper 10 

years’ worth of work with my Japanese collaborators, Shinji Saito and I Ohmine and where 

we tried to get the super cool liquid and glass the free energy of the thing and specific heat 

and entropy and we use this exactly this expressions will derive here. 

 

The entropy we remove the kinetic energy then we diagonalize if they disorder thing we get 

what is called quench normal modes and we then use those normal modes to calculate the 

entropy and the specific heat and that was came out I think earlier this year or end of last year 

or earlier this year long paper. Now many, many people are doing that so this specific heat 

and entropy of harmonic oscillator that you learn in here is used in practical applications in 

many, many cases. 

 

Then comes the rigid rotator what they did in rigid rotator and we assume a rigid rotator 

because we assume that rotation and vibration are uncoupled which we know is not correct 

because in undergraduate physical chemistry when you do infrared spectroscopy, you get PQ 

all those branches, which are because of vibrations and rotation talk with each other, Coriolis 

coupling or centrifugal thing that he rotated very fast then the bond gets stretched or 

compressed.  

 

The vibration and coupling is a wonderful stuff tells you lot of thing most importantly it tells 

you about the anharmonicity of vibration and that is a very, very important quantity for our 

understanding of bond breaking and the activation barrier. All these are very neatly and very 

successingly coupled and is a unified concept that we use one side spectroscopy and other 

side statistical mechanics have a side quantum chemistry and quantum mechanics.  

 

Rigid rotator entropy and specific heat we do not have a simple analytical expression like 

unless we make low and high temperature assumptions when you do that we get expressions 

and then when you do the calculations you find a molecule like water the entropy from 

rotation about 30%, I showed you the table, but all these things that we did I am just 



summarizing and reminding you because they are very important things were non interacting 

limit. 

 

I have a rigid rotator, I have a diatomic molecule, I have a monatomic molecule, but they are 

interacting within themselves, there are intramolecular forces, but there are no intermolecular 

force these molecules did not interact. However, you would not have water on your human 

body unless molecules interact with each other. You would not have a glass, you would not 

have a crystal everywhere molecules interact. 

 

That is why I quoted Pauli I was fond of saying that I created condense matter in the 

repulsion were not there it would not have found. Crystal the hard spehe crystal this improved 

potential is the role our model of studying solid state or liquid solid transition. So now how 

do I go about doing interactions, I know the partition function I know the partition function is 

sum over e to the ei / kBT.  
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Today I will give a flowchart that is what I am talking so much and then we will do the 

calculations which are little formidable. So one will be in rigid rotator we found the 

degenerating factor remember 2 j + 1 that was in rigid rotator you have done in quantum 

mechanics, harmonic oscillator diatomic this gi = 1 particles in a box gi = 1 other way to do is 

classical indistinguishability Boltzmann put by hand. 

 

And this is the one that we know after doing quantum. The best way to think about it to get 

this factor is to do the quantum and then come to classical from quantum which is an exact 



way of doing and you find that you have mastered that. This is other way that you can have a 

conceptual saying okay this is normalization of volume of a cell, but that kind of thing I do 

not particularly encourage. 

 

I would rather say do the quantum and then come to classical and the Hamiltonian this is the 

total Hamiltonian kinetic energy and potential energy and this quantity is the many times we 

do not write all these thing we just write ij here and we put a prime here. That is the stat mech 

people standard notation you just do that then you do not have to write all this it is 

understood. So we are further assuming that interaction is a 2 body interaction means we are 

saying that if I have a 3 particles 1, 2, 3 then this interaction is sum of pairwise interaction.  

1 13

1
... ...

!
N N NN

H
Q dr dp dr dp

N h
e 

   
 

2

1

( )
2

N
N Ni

i

p
H U r

m

 
 

1

u( )N

ij

i j N

U r
  

 
 

2

( )

1 13

1 1
... ... ( )

2!
exp

i
N Ni

N N NN

B

p

Q dr dp dr dp U r
k T mN h

  
  

    
    


 

 

 
3 /2

3

1
2

!

N

N B NN
Q mk T Z

N h
  

There could be 3 particle interaction also which are important in some cases, but 

understanding much of condensed matter physics we do not need this 3 body interaction that 

is a fine tuning. We need sometimes, but like doing a liquid silicon we need the 3 body 

interaction, but much of the time that because when you are kind of they are metal or 

metalloid kind of things in 3 body or 4 body interaction play important role.  

(Refer Slide Time: 09:27) 



 

So now it is popular saying let the bull by the horn that means you have to do these complex 

things this integration where in a classical thing we can do the momentum integration 

because this is uncoupled it is a bunch of Gaussians I do not need to write that I will be 

cavalier about it because I know how to do it. So basically this is the thing I need to do so 

again if I need I will put them back I do not care about them. 

 

So I will write ZN / N ! I will not write the other thing 1 / N !. So this is the configuration 

integral I have taken out the momentum part you understand that I have integration over β h β 

h Hamiltonian has kinetic energy and potential energy they are uncoupled. The kinetic energy 

part ᴨ square / 2 M they are nothing but Gaussian not only that i and j are uncoupled x, y, z 

are also uncoupled. 

 

So I can do the 3N integrals and then I get lambda to the power, lambda is de Brogli wave 

length 3 N / 2 that is a partition that I am not just writing because that is the part which give 

Sackur tetrode equation and PV = Nk BT ideal gas, but right now I am not interested in that. 

Many times when you do the free energy we write free energy A = A ideal + A excess and A 

ideal because this is ideal part comes as a product here correct. 

 

You understand that because e to the – β h is the exponential so that become product then I 

take the log free energy log of partition function and then the product comes out separately 

that I call ideal A ideal is the ideal gas free energy which we did and this is the excess part 

and this is the interesting part. This is a part we are now trying to do. So this part comes from 

the interaction summed particles and which is highly non trivial.  



(Refer Slide Time: 11:43) 

 

I will go back and forth I will use this a little bit then I will go back because I want to give a 

flowchart. I want to tell you how the thing is done so that you get the big picture and then 

doing the equations and filling this big picture, but going directly to the details does not help 

if you do not get the big picture because this is a big picture that will stay with you the 

understanding. The details will be remained in books which are always look up that is the 

way actually to do any interesting stuff.  
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So we did this here this, this and this interaction potential, we discussed at length and this is 

the pair wise interaction potential this is the total potential energy and as I just discussed here 

this is the quantity and I said I do not care about this part because this part is the ideal gas 

part. So when I take the log of that free energy I get and then I get everything from the 



Helmoltz free energy. The reason you work in microcanonical ensemble is because I get 

entropy and pressure by taking derivatives.  

 

It is far more complicated in getting in grand canonical partition function and doing of course 

is very difficult because you have no way to go unless you do particle in a box, but then in 

other systems with continuous potential you have no way to go when you go to 

microcanonical ensemble.  

(Refer Slide Time: 13:17) 

 

So this is the thing then so as I said before that this comes in a exponent u and u is the sum so 

I put that sum here then when I put this sum here this is like that then I realize that this 

quantity is nothing, but product the sum here this sum comes out as a product and then I 

looked at this integral and I had to do this integral in a very, very difficult way because two 

things these integral first is potential is fairly complex. 

 

And to make it worse this potential goes to 0 when separation between 2 particles i and j 

becomes larger which indeed it should be it should go to 0, but that creates the problem is 

that I have to do this integral and if I do that integral then that integral goes to 1 you do not 

want that, you do not want to asymptotic part goes to 1 you want that asymptotic part goes to 

0 and that is what Mayer did then it saturates unity that becomes hard. So partition function 

fails to converge also difficult to do then introduce Mayer f function.  

(Refer Slide Time: 14:36) 



 

So Mayer f function is the following function so the quantity that comes is e to the power – β 

ry this quantity that is the one way of dealing with that is the best and why it is the best 

because it is the simplest interaction potential is there. So there are 2 part of the interaction 

potential. One is this part which excludes particles volumes excludes certain regions of the 

configuration space to my particle because they are interacting and they are harsh impulsive 

at short distance.  

 

Then, however other than that it has a entire volume to itself that part comes from here. So he 

then considered this he said okay let me introduce this function f and that then is like that his 

own sole idea was to make it go to 0 so now it goes to 0 alright and this is my we sometime 

we call it exponential bond because to a chemist, these are essentially bonds, they are 

interacting they are not chemical bonds, but you call some of them call them physical bonds, 

but this has become – 1 now. 
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Now the advantage is that if I put this into there I will get this kind of terms. Now it has 

become I can decompose it into smaller parts that is important thing. Before I could not do 

anything and I can do something okay so then as we discussed the other day this is the 

decomposition I did with 3 particles then the first one is I put it here sum over one term is the 

first term is one.  
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Second term is a 2 particle term next term is a 3 particle term. So one part just dot more line 

when the second this is a bond fij is a bond that connects these 2 particles then this has 3 kind 

of then fourth like that. Total number of particle in the system is so ml now we say okay ml is 

the number total number of molecules in a cluster of size l. So cluster of size 2 how many 

total number of molecules 2 here 3. 

 

So now however so instantaneously at a given position like in this room I have oxygen and 

nitrogen and say I have N number of them and let us consider only nitrogen so I have N 

number of nitrogen and now anytime they have mostly dispersed in the room, but now when 

they come together and they form clusters. They are cluster of diatoms, they are clusters of 

diatomic, there may be little bit more of that.  

 

Much of the time I can describe this room by the function f12 at most they are diatomic, but 

you understand that whenever there 1 is coming under this interaction of the other through 



interaction potential I draw a bond, but these bonds are flickering bonds they are breaking 

and forming because as molecules come in together and going away and but the 

instantaneous state of nitrogen in this room is given by the ml.  

 

And as we are talking and the N number of nitrogen molecule then m1 is 90% of that and 

then of the 10% another 90% are this one binary interaction and small number will be ternary 

interaction. So you immediately see if I want to describe the nitrogen in this room I do not 

need the ternary turn that much. I can see beginning to see an approximation at the low 

density that I can do with ideal gas plus a correction and that correction is the f12.  

 

Now I go to dense gas I go to nitrogen little bit denser and then to liquid then I need all the 

terms, but I have a systematic way to add them. This scheme will not work all the way, but 

this scheme will take us far and then a different theory takes home, but it is the beginning.  

(Refer Slide Time: 19:27) 

 

Now we define the cluster integrals called Mayer cluster integral which are in a given class is 

characterized by l. We are not making a distinction between this and this now we can then 

consider all these clusters now what are the clusters just in Feynman Path integral or 

anywhere these are nothing, but these general language of physics which started 1937 

Mayer’s paper these are nothing but integrals.  
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So when you say graphs in physics they are integrals and then this is most powerful language 

in many body physics. In chemistry we use it in theory of liquid even these people the 

quantum chemist they do this T operator expansion all these different things essentially e to 

the power very similar thing goes on air. So there are certain universality and understanding 

all these things to understand 1 you basically know why 1 is doing this.  

 

So this is then we can now calculate the okay but the dot first one is this quantity b1, b2 is 

this quantity and b3 I sum over everything. Remember these are my these 3 and last one the 

formidable one is this one. I can go on writing like that. So these are the Mayer introduced 

and this is the cluster integrals it is called reducible cluster integrals because this can be 

further reduced into this part and this part. 

 

 This is called irreducible we will handle and this is irreducible, but this can be explained in 

terms of this one. Now next what Mayer did okay as I told you that we are going to divide 

and conquer we have a full partition function we are reducing this total partition function into 

the cluster integrals then we reduce the cluster integral even further called irreducible cluster 

integrals. 

 

Then you will see under certain approximation the irreducible cluster integrals are nothing 

but virial coefficients. Suddenly you see oh I can now have some limit, this is beautiful, it is 

rather complicated theory, though beautiful. We can connect it to experiments and you will 

see that this is really very, very nice. Now what we did we have to now find out that what is 

the decomposition.  

 

Decomposition I want to express the partition function in terms of this reducible cluster 

integrals how do I do I know ml is the number of clusters of size l and when I say okay and 

this is my definition and remember that this is kind of a normalization factor put in here. L ! 

because the number of ways I can arrange 2 !s will come one is l ! and is ml !. 

 

And as I was saying this is the kind of things looked into from the multinomial theories 

where you can arrange the particles in a box and you name the box 1, 2, 3, 4 like that and this 

is my l the number written on my box is l. So when I have 2 particle cluster I put it l = 2. I 



have a 3 particle cluster I put l = 3 now each of say l = 3 I have the 3 particle clusters and 

number of 3 particle cluster in my box label 3 is m3 and this is the way that one does exactly 

this problem is done in combinatorics. 
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When you do that this is what is the configuration integral of that this is just this thing 

because ml of them and this is the weight so this part is trivial right. Little less trivial is total 

number of ways we can combine them N of them into groups of l and this is distributed in 

unnumbered piles of objectives this is the quantity. So there are total partition function is a 

product of the 2 we will do the products they are certain cancellation l ! gets cancelled ml !s 

survive and vbl to the power ml. 

 

And this is the beautiful expression is we call it is exact used also in quantum it is called 

Mayer-Ursell cluster expansion. So this is an expression of the partition function. It has 

certain advantage certain disadvantages but whatever it is it is exact. So this is called 

decomposition. 

(Refer Slide Time: 24:19) 



 

This is so beautiful let me write it down okay so this is the quantity I wrote down and the way 

to work with these exact partition function is to consider what you call thermodynamic limit 

we have to take N going to infinity V going to infinity such that N / V rho equal to constant 

that limit we will take. We will ignore this for the time being we will come back.  

(Refer Slide Time: 25:16) 

 

Now something very interesting how did Mayer go further and derive 2 very, very important 

thing which we call cluster expansions. One is the density in terms of lb and zl I will come 

back, but I just want to mention this two. We can derive it from grand canonical partition 

function also another thing is the pressure in terms of bl zl. I am giving you and then come 

back and so this things that we will derive now.  

 



So look at the beauty density is l bl z where is the fugacity which is done just like β and 

canonical ensemble β become 1 over kBT. How did β enter into the description in canonical 

partition function absolutely like Lagrange multipliers. Here also what is the constraint this is 

the constraint and that constraint enters through Lagrange multipliers now. Β enters through 

which constraint energy exactly.  

 

So temperature energy are conjugate quantities right so here what is the conjugate of number 

absolutely and then this is e to the power µ/ k so fugacity. It is just beautiful these things are. 

So I have an expansion I will derive in a minute density in terms of cluster integrals. 
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And now I have little bit more work I get now pressure another equation I will derive is this 

things. I have told you I will give you a flowchart. So I have an expansion these are called 

cluster expansion they can be derived also through a grand canonical partition function, but 

that does not have the physical picture it has in Mayer’s theory. Now I now give you 2 

expansions one is density in terms of fugacity. 

 

Then I give you another pressure is equation of state. Now if I give you 2 series and I tell you 

to eliminate this you have done in your class 11. Eliminate fugacity give me an expansion of 

pressure in terms of density. I give you everything I give you all the coefficients I have not 

told you how you are going to calculate them and I will tell you that, but I can eliminate like I 

have given 2 series. 

 



One series is density in terms of fugacity another series pressure in terms of fugacity. Now I 

tell you eliminate fugacity give me a series of pressure in terms of density that is possible so 

long both the series are converging. When you do that you get the virial series that is the 

thing I kind of jumping and telling you. What is the flowchart now we have we start with the 

partition function we are getting a decomposition which is the cluster decomposition. 

 

And exact partition function in terms so we formed earlier, when we go to cluster integrals 

then I get a partition function then I get 2 expansions which I eliminate and get the fugacity 

that allows me now to get the coefficients of cluster integrals and we will do that. The way 

one works out with this equation then is that we will do again the same game as we discussed 

we will take a maximum term method. 

 

This is a principle of statistical mechanics it turns out that when you have see ml is the 

distribution of distributions please try to understand it distribution of distribution why as I 

said my nitrogen example there is any time ml the number of particles of number of cluster of 

size l that is the distribution. However, as this continuously changing there is a distribution of 

distribution.  

 

Now however there is one distribution which maximizes the partition function and that is 

called maximum term method is a very already very well established method and probability 

of maximum term method. So we have to find the maximum that particular set of ml I call it 

ml star which maximizes the partition function and one can now show by mathematical 

analysis in the limit N going to infinity the maximum term method dominates.  

 

So there is a distribution that is the reason a system is stable that is the reason we free energy 

is minimum it is all tied together. So now you can easily do a maximum term method there is 

a huge amount in Wikipedia and all these things in probability theory because it used in 

probability theory. Yeah exactly very good question excellent question we implement 

maximum term method through Lagrange multiplier.  

 

Whenever we are doing maximizing or minimizing something subject to a constraint so the 

maximum term method is general method which we used even before, but like Lagrange 

multiplier is the weight we implement that. Whenever you are finding extrema of something 



with a constraint extrema means d/d alpha that quantity is 0, but you want to do it with a 

constraint if you do not have the constraint it will give you everything. 

 

The constraint is done through like Lagrangian multiplier and that introduces undetermined 

coefficient which you apply to physics or experimental or our physical A and get what is 

undermined multiplier like we found out to thermodynamics β is 1 /kBT. So this is what I 

have been talking of the flowchart that there is a grand scheme that is going on and we need 

to appreciate the grand scheme that how the whole thing is unfolding.  


