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So, at high temperature specific heat of solids, all you have done in your high school and that 

you know that specific heat ( Cv  )goes as 3R. This is from classical vibrations, that was done 

in quantum mechanics and this is called do Dulong-Pettit law. However, when one measures 

the specific heat, here we plot against temperature, the one before people had up to this and 

that is Dulong-Pettit law (3R). But when you go to low temperature this starts goes like that.  

 

That means these experimental results becomes available after low temperature studies in 

1917-1920 and around that time this remarkable departure from classical statistical 

mechanics. These are just one of all those beautiful things happened starting with the 

blackbody radiation, photoelectric effect, Balmer series, quantum mechanics or all the other 

beautiful things. So, break down a specific heat at low temperature immediately drew huge 

amount of attention and people could not do, people could not solve because they did not 

have energy levels. 

 



However, Schrodinger solution of the harmonic oscillator and energy
1

2
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 
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 

, they 

came available in 1926- 1927. And then at that time these beautiful departures from classical 

mechanics, it was done by Einstein. What did Einstein do and then corrected by Debye and 

that became to known as the Debye-Einstein or Einstein-Debye theory. 
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So, what Einstein realized that the solids have many low-frequency modes. They are low 

frequency, in compared to, this is a very interesting, there are low frequency with respect to 

atomic vibration. But they are not that low frequency that you can treat them classical 

mechanics. So, there are frequencies which are normal modes. So, basically when I have a 

say once in a one-dimensional model. 

 

So, we have this chain linear chain. Then the Hamiltonian is the vibration, this vibration, this 

vibration, this vibration, this vibration, n number of vibrations let us say. Now, these modes 

are: the position of these molecules ( ) ( )
2 2

1 2 2 3 .......x x x x− + − , they are in terms of atomic 

position and goes like that. Now, I can make it so when I expand that the 

( )
2 2 2

1 2 1 2 1 22x x x x x x− = + − . 

 

Now, I can make a coordinate transformation which the same as diagnosation where I go to 

representation where since 
1 2.x x is a linear coupling and this is a very important. And I do not 

need to go to it but nonlinear I cannot do that but linear coupling I can diagonalize this. And I 

go a new set of vibrations. Those vibrations are now is collective vibrations. That means it is 



like in water we have a collective symmetric stretching or asymmetric stretching where 

oxygen remaining the same but 2 hydrogen are moving together. 

 

Okay, similarly, here all the molecules/atoms are moving together. That means there is a kind 

of these vibration, all of them moving together, they are like sound waves and their 

compression and their repulsion and their some of them are like these others are going like 

that. So just like symmetric-asymmetric stretching in water, there are many-many, you know 

if it is linear case (3n – 6) vibrations are coming in. 

 

So, these are the collective modes when you get by diagonalizing the Hamiltonian and where 

collectively the molecules are moving together. And these are low frequency mode. Then 

these low frequency modes, as I told you, they are low enough frequency to contribute 

enormously significantly to entropy and to specific heat. But they are high enough such that 

you cannot contribute them through classical methods. 

 

When you go to high temperature then these modes (low frequency modes) can be treated as 

quantum mechanically. But when you go to low temperature to low temperature, this is a 

temperature I am talking of 0 Kelvin (temperature in Kelvin). So, in this region, so maybe at 

300 Kelvin or 200 Kelvin you can still have the Dulong-Pettit’s law. But when you go to 10 

Kelvin or 5 Kelvin, then those low frequency modes has to be treated quantum mechanically 

and they make a very important contribution. 

 

That is now given by Einstein famous theory which first Einstein did it in it and has a 

exp( )T− dependence. What Einstein made, he did not do all these diagonalisation or 

anything. He just said all the frequencies, on this solid, you got the total number correct, all 

they have the same frequency i.e. constant frequency that is called Einstein frequency. 

 

Then this is very easy, then I go to Einstein frequency and you can now calculate the specific 

heat from there. Debye did it tightly. Debye took care of what we called frequency dispersion 

i.e all these modes are of different frequency they have been lowest and the highest 

frequency. When he did that, he got the real value it is as 3T , the famous 3T  law but that 

came out essentially from just what you are doing here. 
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Okay. So, this is specific heat,  
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Then when I do these from entropy then I get this expression,  
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So, this is the entropy,  
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I take derivative, I get one term from here, I get two terms from here, I can combine them and 

when I combine them you get this expression 
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check it out. It is trivial. From entropy this really trivial thing and I am not going to do it but 

believe me that this is the expression that comes in this is the specific heat of the one 

harmonic oscillator which frequency  . 

 

Now, as shown by Einstein and later on by Debye, these expressions plays an important role 

for specific heat of solids at low temperatures. So high temperature will go to Dulong-Pettit’s 

law but at low temperature, we now in order to calculate make it as frequency dependency 

( )vC   and then we have to integrate with the density of states ( ) ( )vg C  . 

 



This is what Einstein did and Einstein said okay, I can have only one frequency i.e. all the 

frequencies are the same (identical). Then I have N number of vibration into ( )v EC  i.e 

( )vib v EN C  vibration,  
E is Einstein frequency and I get an exponential dependence as 

Einstein showed in this region. However, all these vibrations do not have the same frequency. 

They have a maximum frequency because of the wave is acoustical they are essentially waves 

that you can accommodate within this thing. 

 

For that extra consideration important becomes important that even at low-temperatures that 

gives 3T  law. So, this is a really interesting thing that happens in 1930 or 1932 or around that 

time that Einstein did and then Debye corrected Einstein. So, the statistical mechanics of a 

harmonic oscillator plays such an important role in doing this. 
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So now continue. So, the next we will do the rational partition function. This is the vibration 

and as I said even very recently, even today many-many people are doing those entropy, 

those specific heat, you know, to consider amorphous solids and these low-temperature 

liquids. For example, we ourselves did a work last year with a collaborator Shinji Saito, a 

long paper came out in Journal of Chemical Physics. We used these things to calculate the 

specific and entropy of low temperature water and that simply explains several things. 

 

So, many people are using this thing. So, just like quantum mechanics the vibrational spectra 

are given by the solution of Schrodinger equation and the harmonic oscillator plays a very 

important role, you know, is something really surprising that such a simple model and kind of 



artificial model play so important role. But that happens in physics again and again that is 

why harmonic oscillator model is very much cherished, that is very much loved and liked by 

scientist because they can use in many different situations. 

 

Similarly, now it goes up like that translation, vibration also all these things are very 

important. Now, rotation. That is why we are repeating it. Now we do the statistical 

mechanics of rotational motion. With did translation, we did vibration, we said electronic is 

not important and but a rotation is important. Now rotation has a place which we do in 

vibration and translation. 

 

In translation, we got away without doing quantum mechanics. In vibration we had to do 

quantum mechanics. But in case of rotation, it is in between. If translation energy level is 

facing like this, very continued continuous then and rotation will be like this, vibration is like 

this. So, this is where we are somewhere in between quantum and classical. 

 

So, we will see that in low temperature, this energy discreetness, the quantum nature of the 

energy levels, the discreteness plays an important role but in a high temperature it can be like 

classical mechanics. So, let us do. Now again Schrodinger solved for a rigid rotated, the 

molecule is rotating with a moment of inertia I, moment of inertia plays the role of mass you 

know. 

 

So, this is the energy levels that again Schrodinger gave us 
( )
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But there is a very important thing now which we never faced before. That these energy 

levels are degenerate. So now before we are talking of individual energy level, they are not 

degenerate in particle in a box (one dimensional). For the particle in a box (three-dimensional 

box), they are degenerate in a different sense. 

 

That means I can mix x, y, z. I can have (0,0,0), I can have (1,1,1) or I can have (1,1,2), 

(1,2,1), (2,1,1). But we just sum them up because as they are decoupled. Actually, if we take 

up that it becomes more complicated. But in rotation even for a single rotation we have the 

degeneracy which is (2J+1). Then partition function goes as sum over these energy states 

which are given by energy j and then we have degeneracy gi So, exp i
i

B

q g
k T

 =  
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 . So 



instead of each energy level, we count the energy states that means ok these energy states is j  

but I have (2 J + 1) of them. 

 

So, this thing is gi = (2 J + 1) and this j is this quantity 
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now my partition function now becomes this quantity. My partition function now become this 

quantity ( )
0
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this case also. So now ( )
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Till now I have been doing very simple substitution but now I can play little smart. I realize 

the (2J+1) is nothing but a derivative of J(J + 1). So, (2 J +1), if I 

take 2( 1) ( ) (2 1)
d d

J J J J J
dJ dJ

+ = + = + . So these quantity is nothing but a derivative of the 

J(J+ 1). Okay be little smart.  I do 
d

dJ
 but however that brings how many other quantities 

and the partition function becomes, 
( )22
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This is same as this quantity. But that is been now very nice. Okay I made some progress. I 

cannot evaluate this sum exactly which is a pity, really pity but we cannot do it many times. 

You will see some really simple things we cannot do. Maybe some of you can be smart and 

do a better approximation in this case. But we have not been able to do. So, then I can write  

( )
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As because it is not no point of writing it again and again so I find ( )J  as this quantity. So, 

this is my partition function rotational partition function.  



That means then this is your rotational partition function. Let me see what I can do with it. 

So, as I said for many molecules, this is particularly important for physical chemists that 

where we have the rotation. 

 

I remember when I was doing postdoc at University of Chicago with the James Frank 

Institute and there was some fantastic group of people there. There are some guys who made 

history and there are people like S. Rice, John Levy and they were doing spectroscopy in the 

gas and there was a lot of excitement to detect rotational level dependence of electronic and 

vibrational relaxation. This was the reason they have the partition function. 

 

They know this thing is there. So, if a molecule rotates very fast then they will modify the 

coupling between different energy levels. Then we would be able to see if the temperature 

dependence of vibrational-relaxation, rotational level dependence that would not be 

otherwise, if the vibration rotation coupling is not there. Okay, so let us go ahead and do 

some little bit more of them down now. 
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Okay, so, important thing is that the very important comment here the strong dependence of 

partition function of moment of inertia. As I said, this plays a very important role in energy 

relaxation, in vibrational energy relaxation. So then low temperature we go to T going to 0 

limits. Then this quantity if I go to low temperature then  

 ( )
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Now the partition function is 1 + 3 by these things. A similar simplification happens in the 

high temperature also. High temperature energy levels are continuous like in classical 

mechanics that means J (J + 1)/kBT when temperature is very large, they get squeezed. They 

are very close to each other. Now I can replace this sum by integral. If I replace this sum by 

integral,  then I can do that integration because I already have the interesting thing that this 

guy (2J+1) is a derivative of this guy J (J + 1). 

 

So, it is just an integration, ( )
d

dx f x
dx . This is the integration 
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quantity, 
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 I have now a very nice partition function at high 

temperature. And, I define rotational temperature just like before that is 
2
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the partition function must be dimensionless. 

 

So, this quantity, r  has units as inverse of temperature just like in vibration, I define rotation 

temperature. This is something one has to be careful. I said a very important thing here that 

partition function is dimensionless and that is q because it is sum over energy levels so this is 

number exponential is a number. So, q is a so when we did the translation or vibration 

function the quantity that makes this dimensionless is lambda. 

 

So, we have to be very careful lambda is de Broglie wavelength and de Broglie wavelength 

comes again and again and that comes through this Planck's constant and all this combination 

plays very important role in the quantum-classical analogy. So, when Boltzmann and Gibbs 

did, they did not have the Planck's constant. 

 

So, they left their partition function with a volume term and that then they that were 

reconciled as we see is the volume of the of the cell in the phase space and all these things but 

you do not need that really. You have to for bookkeeping you do not need the physical 

interpretation but because there is an exact expression well you can go. I do the physical 



interpretation like Richard Tolman did a lot of it and that probably helps in certain cases but 

you do not need that. 

 

So now I have the beautiful expression of the rotational partition function which is 

2
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8 B
rot

Ik T
q

h


= . This is my rotational partition function. So I have the translational partition 

function, the vibrational partition function and the rotational partition function. 
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Now I go the rotational partition function, calculate the free energy at in the particular high 

temperature limit. So, these the high temperature limit. In the high temperature limit,  

lnBA k T Q= −  . Then I get this quantity and then I get the free energy as I look at that then it is 

T by T theta r and because the T is the numerator theta is the denominator theta it you can 

like that. That has to be careful about. 
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Okay so this is the free energy then we can calculate the other quantities like entropy. 
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And this is important as I told you that when you are going to talk of low temperature and up 

in the cloud, the entropy of water molecules, entropy of a linear molecule; still now we are 

doing diatomic. We will do polyatomic very soon. But we get. These are the quantities we 

need. So entropy is now a function of moment of inertia. Entropy of molecule moment of 

inertia I. 
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And the expression is by taking the derivative of the doing we get this quantity because these 

quantities before that and there is quantity there is a temperature here. There is a temperature 

here so two terms come out.  

 

Now we get the specific heat, r
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S
C T
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 
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. We take the derivative of entropy. There is no 

temperature here. There is only temperature here. When you do that, you get a beautiful 

expression just like an ideal gas that specific heat ( )V BC Rotation Nk= . So, this is the thing 

that we really wanted to tell you that. 
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Now next in the next lecture we will start with the polyatomic. Yes, we will finish the 

diatomic completely. We calculated entropy of rotation with vibration translation. So, but as I 

again and again telling these are very important things even though they are in non-

interacting limit, they go on the backbone on each interaction is built in like variable 

equation. So, we start with Gay-Lussac’s gas law. You add in the attraction and that the 

variable equation of state. 

 

Okay then we start with the harmonic oscillator model. So, we add the correction term to that 

comes from ideal gas law. This is the way actual mechanics built up. Actually, there so a 

quantum mechanics also built up that your part of perturbation theory. That you want to talk 

of harmonic oscillator. But the transition vibration you need a perturbation. Otherwise, you 

know they are states. They do not talk with each other. So, the interacting system comes with 

a perturbation. 

 

Sometimes when the perturbation does not work into where things are really interesting. So, 

the next lecture will start here in the polyatomic systems. And then we will go on doing some 

very interesting stuff so stay tuned. Thank you. 


