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So now, I will go and start take you through the okay; so we now calculate the partition 

function of the system and you can, you just look at it that we wrote down this ideal gas, so 

ideal gas is the total Hamiltonian is the just kinetic energy, ideal gas means the particle does 

not interact with each other, so we do not have any potential energy, If you do not have any 

potential energy, then it is just kinetic energy. 

 

And kinetic energy means it is just sum over  as we shown in this equation here it is just that) 

now, I want to get the; so why that means that I want to get the partition function and as I 

have shown the partition function here is 1 over N !  and h to the power 3N then dr1, drN, 

then dp1, dpN e to the power - β h, so this would be the partition function. 
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Now, look at this partition function, there is no interaction, so position of the atom, so I have 

this like I have taken a monatomic gas ( spheres) and they do not interact with each other like 

an argon or a noble gas in low density and then interestingly, if I do that then  each particle 



they do not interact with each other, so they are completely disjoint. If they are completely 

disjoint I can separate them out. 

 

That means this indication dr1 and dr2, dr3 are not coupled, dp1, dp3 are not coupled, so I 

have essentially N integrations; identical N integrations was a product, like these are just 

product, so then I have e to the power N and then I have h to the power 3N here and so this is 

then my partition function where q is now given by this integration of dpx, dpy, dpz, dx, dy, 

dz e to the power -β H, this is the partition function of a single particle. 

 

And then that I can now do because dx dy dz, in β h there is no position, so I can just 

integrate over dx dy dz and I can get volume V , this clear that this volume V comes out  and  

I have to evaluate this integral which is this Gaussian integral and I can do that Gaussian 

integral, (this integral I can do because just bear with me for a minute), this is I know that -∞ 

to ∞,  dx e to the power – ax
2
  is root over п by a, I know this integral that integral is used 

here. 
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Then if you do that this integral then becomes there are three integrals, there are three 

because dpx, dpy, dpz are independent of each other because kinetic energy p; one particle is 

px square plus py square pz square, so they are again uncoupled so, I think Gaussian integrals 

and that integral I can do, so then I know root over this, so this is 3 of them and each comes 

with root, then and there are 2m, so 2m goes over 2п m kBT. 

 

And kBT is there β is 1 over kBT, so when I do that I get this, so this is the partition function 

of a single molecule in ideal gas, this is the single particle partition function this quantity, the 

single particle partition function, okay, so that thing is done, so then we can now go back and 

construct the next partition next, okay. 
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So, now we got the partition function and the partition function  QNis 1 over N ! and then 2 п 

m kBT by h square 3 N by 2 this is the partition function. So, now we know that from 

canonical ensemble we have done that in lecture I think 4th or 5th that free energy equal to - 

kBT lnQN this quantity, so now we can put the Q that we this Q here, so then we get - ln this 

becomes - ln N !. 
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And this become N, this is Q to the power N, so N ln Q, so and this is trivial right, that means  

QN equal to Q to the power N by N ! that thing is used here, now we put the value of Q there 

which we derived before, so we get the ln N !, Sterling’s approximation is made, so ln N ! 

equal to N ln N - N. If we do that this - N actually shows up here as A and we already have 

V, so Q is already have this N 3N/ 2. 

 

So, I bring out that, so I have a N here, so this the only 3 by 2, so N comes out, so N kBT 

here, this kBT and Q to the power N, Q is Q to the power N that brings it N, so N kBT ln then 

2п m kBT by h square 3 by 2 V, this is multiplied by whole thing here V by N because they 



separate it out ln V and the one is this comes from these things, you can just work it out the 

basic things which you will find, we will work out and find, okay. 
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So, important thing to understand now that everything is in logarithmic, so I have a 

logarithmic here, so there will be logarithmic β because it is V to the power N, so that comes 

from the volume integral and so ln that part is ln V to the power N, so that becomes ln V. So, 

now I can calculate from here the pressure, I can calculate the pressure from here and that is 

by thermodynamic relation pressure - dA by dV T. 

 

And then you can do that look at the; let us do these things here, so this is ln, so then I break 

it out like ln this term plus V by ln, so it just ln V dA dV then that N is there, this just goes 

out and I get the 1 over V term the ln V, so ddV ln V 1 over V, so NkB T in front so NkBT by 

V by doing the derivative, then PV by NkBT, so this is the ideal gas law. So, now I have a 

microscopic derivation of PV equal to NkBT which was surmised by doing experimental; 

enormous amount of experimental studies and also what comes out from Maxwell, 

Boltzmann kinetic theory of gases. 
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But here there is no kinetic theory of gases, no collisions with the wall, no cross section that 

we have done you have to do the collisions of the wall with the kinematic description, we did 

not take any kinematic description anywhere, we did have a kinetic energy of course but we 

do not have a kinematic description but this is very important to understand that this is the 

pressure of the system of molecules which is contained in a volume V, this is really magical 

this derivation. 
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Next what goes on something even more magical ; now we are doing something really very, 

very important and this is something one of the major reason of reviewing this class once 

more and also we will do that in the diatomic gas also, there are certain very far reaching 

consequences and we do not, actually these kind of jumps that it comes from almost nowhere 

because we did not expect such a beautiful relation. 

 

So, early in our derivation or study of a for such a major area of research, so the formidable 

area of research like in statistical mechanics which is actually as I told you again is one of the 

2 major disciplines of our thinking, our theory, our understanding of huge number of 

phenomena, the very, very first class I spent fully on describing that thing okay. So, now we 

have the partition function and now we have the free energy. 

 

Because we have the free energy A equal to; we have this beautiful relation, now I know 

entropy because I know entropy by this, I know entropy A is equal to - dA by dT, I have aQN 

, I know the  QN because I know QN is 1 over N ! h to the power 3N q to the power N and q I 

know is 2 п m k BT 3 by 2 and volume V, I know everything, so I know QN and q is the single 

particle. 

 

And then I know free energy exactly and then I can now calculate entropy, I can calculate the 

absolute value of the entropy, it is very important because thermodynamics cannot do, now 

yes you can say okay, I can get it from ideal crystalline all these things but this is okay but 

you know everything have to be done numerically. Now, I can do that and the beauty of this 

thing is now that if I do, I take now look at this. 



 

I show, I take QN, I take ln of this thing, now look at that so, a free energy has temperature in 

two places; one is in temperature T, this is one, another place it has is in temperature T here 

in q here, so when I have to take this derivative, I have to take care of this temperature and I 

have to take care of this temperature, okay. Now, I do that first one is easy, dA/dT just this 

goes off, I have kBT ln  QN T V and this is QN T, V, great. 

 

That is why 2 п m kBT by h square all these things come in, wonderful now, I have to do the 

second derivative that now I come here and do the derivative here okay, now as I told you it 

is not Q to the power N, so N comes out I have a q and I have to take the temperature 

derivative of this q okay, then ln q, so then I do ln q, then ln 2 п m kB plus ln T, I have a k BT 

sitting in front,  when I do that okay. 

 

So, now I can take that derivative, I can do this derivative on this quantity and I can then I 

combine the terms, this you can do yourself and is left as an exercise, you can do it yourself 

and you will get that entropy, just do it yourself it just takes a couple of minutes, then you get 

that this quantity this entropy, so this part temperature part is ln Q, the ln is here and q is here 

2п mkB T and that is the volume V, this volume V is here, V by N. 

 

And so everything remains the same except e becomes 5 by 2 because 1 extra terms comes in, 

3 by 2 N comes because this derivative this 3 by 2 that comes out, so then that T 3 by 2 here, 

so when you take the derivative of that then 3 by 2 comes out and T becomes 1/2, the T 

becomes 1/2 then you have a T to the power; this becomes T to the power 1/2, you have the T 

here, so you combine that T that becomes 1/2 here after taking derivative. 

 

So that become T to the power 3 by 2 again, so you combine get 3 by 2, you are left with one 

3 by 2 term that your one term, you can combine and get e to the power 5 by 2, so the main 

thing is to combine and you can get that term, so this is the then, this is an exact expression 

for an entropy, a highly nontrivial equation which is this thing that entropy of N number of 

ideal gas law is NkB ln 2п m kBT 3 by 2 kBT by P. 

 

Now, this V by N one can use now, PV equal to NkBT ideal gas law, PV NkBT and then you 

remove V by N, bring it here, so it becomes kBT by P, this is more useful because most of the 

time at a constant pressure not at constant volume and we know the number of particles and if 



we know and at temperature, constant temperature, constant pressure constant N, so this more 

of an experimental thing. 
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Then this is an exact expression of the entropy of the system, beauty of it is the following; the 

V by N that comes here when you do the calculations is a very important thing, very 

important to understand from that, that what makes everything an extensive quantity. So, the 

entropy that I have here is just for entropy is portion of N as it should be, everything else 

inside is an intensive property. 

 

The temperature is an intensive property, pressure is an intensive property, so the entropy is 

extensive because it is proportional to N but this is a beauty of an equation, it is called 

Sackur-Tetrode equation, it is obtained called ST equation, this is equation which is one of 

the; so you now, the basic idea of my telling all these things again in great detail is to give 

you an idea how the statistical mechanics flows, just like in quantum mechanics you do 

particles in a box you learn that how you solve Schrodinger time independent Schrodinger 

equation by putting boundary values. 

 

And when you do that low and behold discrete energy levels appear and then immediately 

find a news of that particle in a box explaining the spectra of butadiene or conjugated 

polymers, then you go harmonic oscillator and low and behold you can get some idea of the 

vibrational spectroscopy, rigid rotator you get rotational spectroscopy, those are very 

preliminary, very simple things that we solve time independent solving equation. 

 

But we get back huge amount of information as if without doing any work that you are 

getting such formidable and very fundamental things, this is essentially analogous to 

particular box or harmonic oscillator we will use harmonic oscillator immediately now but 

important thing to know that we are getting PV equal to NkBT, we are getting an expression a 

beautiful expression of entropy and absolute value of entropy although ideal gas but it will 

find lot of use in even today this research, this equation finds a lot of use. 
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So, one can now calculate the translational entropy, this is called translational we have taken 

only translation into account so entropy, the values of the; absolute value of the entropy, see 

in thermodynamics, it cannot give you absolute value of the entropy, absolute value of the 

entropy, this is the neon, argon and krypton in atmospheric pressure. 

 

But then atmospheric pressure of course is probably not a; but whatever condition is not 

written here, (I do not remember) but the experimental condition that we can calculate this 

translation into the particle, then we can experimental way of finding the entropy and it 

agrees with the experimental values of this entropy of these 3 gases, they are very similar to 

each other. 
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So, now I will just want to tell you why these things are so important and so what are the 

Sackur-Tetrode equation; one of the important applications of Sackur-Tetrode equation of 

modern times is this quantity which is the very recently has been used by several people that 

you want to calculate that how a drug goes into you know minor or major groups of DNA and 

that is very important to know. 

 

Because of many chemotherapeutic drugs they go and bind to many other drugs, bind to 

DNA is the target of many, many therapeutic studies and so we need to know what is the 

binding energy of this molecule, drug molecule, this is now done in the following way that 

you consider your drug molecule; the drug molecule is going to go and bind to minor major 

group of the DNA. 

 

So, now this has a lot of entropy in the ideal, when it is in solution now, in this solution we 

can treat it as an ideal gas because a single drug molecule are very low density (drug 

molecule that goes and combines to these the DNA), so that we need to know the entropy, 

loss of entropy of the drug when it binds there, so we need to know the what is the entropy of 

this molecule in solution that is why Sackur-Tetrode equation is used. 

 

Then you want to do for example, gas liquid nucleation; in a low temperature a gas is going 

to go to bubble to form a bowl like in atmosphere to form nucleation, then one need to 

calculate how much entropy the gas particles are losing in order to form the bubble because 

you know once from a bubble, it moves very slowly and it moves as one particle, so N 

number of gas molecules like water, forms and goes, form the water droplet then is a huge 

amount of loss of entropy. 

 

So that actually resists formation of the droplet, formation of the cloud bubbles and 

particularly that is why high temperature when the water molecules are still there but they 

have lot of entropy and they will not form the bubble, they will not nucleate, they will not 

nucleate to form a water droplet which can form as a rain. So, entropy of these water 

molecules in the gas phase it is not just translation entropy, this is a rotational entropy, it is a 

vibration entropy we will talk of that. 

 

So, all those entropies play very important role, so this is done by this gas liquid nucleation is 

a huge area of research and in the study of this nucleation against this entropy, this in the 



nucleation theory again this entropy that we derived today finds use. Now, finally to end this 

part that specific heat 3/2 R ,that’s very trivially derived now, you go to Sackur-Tetrode 

equation, do the dS/dT, then you will find that it just becomes 1 over NkBT by T that T 

cancels. 

 

And you get Cv equal to 3/2 R and that is one of the; PV equal to RT along with the ideal gas 

law, Cv equal to 3/2 R and Cp is 5/2 R and that is because another way to derive, E equal to 

3/2 RT that you know, then dE/ dT Cv, this is Cv and that is 3/2 R that is the derivation that 

we you know from the kinetic theory of gas but this is the derivation here coming from 

entropy directly with the entropy, so it is the alternate derivation same result. 
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And is since my equipartition theorem is involved, I cannot say it is more fundamental 

because equipartition theorem is as fundamental. This is a statistical mechanical derivation 

starting from partition function, so this is about the ideal gas law, monotonic gas and ideal 

gas law that I wanted to do again in order to tell you the take you through a second time the 

things. 


