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Now, then I have kBT ln Q to the power N is N ln q, then because there Q to the power N and 

minus ln N factorial, this N comes because there is an exponent here in QN and these comes 

because of N factorial, then what is something is jumped here but I hope you will be able to 

do that I put now, Q to the power; this is my Q, so Q to the power N has becomes ln Q, so 

these become; what do we have in the last page, this quantity you have N ln N the N ln by e 

to the power N all these factors come here. 

 

And these N becomes NkBT, these factor that is here with h square everything, these thing 

that ln V by N that ln V is not from there that comes that V comes from this V; 
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Sterling’s approximation gives this factor V by N to the power e ie �! = �
�
�
��that is play the 

very, very important role as we see right now. So, if this is the free energy which is following 

from this, from there we get, we do this, this is a little unstable, from this then we get this, 

then we take the derivative with the pressure minus dA dV T and thermodynamics, there we 

get if you do that then all these things, since their log all of things these do not matter, these 

do not matter, I just get 1 over V because it is ln V 1 over V then gives NkBT by V and these 
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So, this is the ideal gas which are written down by people from Boyle's time from 1830s or 

1840s something which he used, Maxwell used but there was no derivation, PV = RT was the 

kinetic theory of gas derived it by using, remember P equal to 1/3rd mN C square and then 



you put C square there, you get this quantity and but that is I told you kinetic theory of gas 

had this kind of strange set of assumptions within it, it does not interact. 

 

But at the same time, it has a size and it is interacting with wall having an elastic scattering 

like a billiard ball, as a the basic idea that it is a non-interacting collection of particles and 

that gives rise to these ideal gas law was proven, so these are the as I told you in the 

beginning, these are beginning of the applications of statistical mechanics, so these one of the 

result. 
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Then this next result is that this is very, very important thing that I told you Sackur-Tetrode 

equation and this Sackur-Tetrode equation follows trivially, then you go now take with 

respect to entropy is negative temperature derivative of free energy, okay and that when you 

do, I take B dT what I can see what can happen, I can, it can, this is strictly 3 by 2 here so that 

will become T to the power of 5 by 2. 

 

So, first term I take dA/dT, first term we will just take remove this term and have NkB ln 2 by 

k to 3 by 2 okay, then second term NkBT remains NkBT, I go and do derivative of this term. 

When I do ln there inside then all these things disappear, they are long terms, I do not have to 

take care of them, I have to take care of 3 by 2; 3 by 2 when I take a derivative, it become 3 

by 2 comes out and it becomes 3 to the power 1 by 2. 

 

Because ln T 3 by 2 1 over T 3 by 2 and then you can combine the and the 1 T there that 

comes in and that hits you with the 3 by 2, so that again become okay 1 by 2; this is 1 by 2, 



you hit by, again become 3 by 2 and when you do that ultimate result is 2 pi by; I am not 

deriving this, fairly trivial but you can do it because it is just ordinary derivation. So, these 

quantity, this is the expression of entropy of an ideal gas which plays very important role, we 

will show right now is called the Sackur-Tetrode equation. 

 

This equation is given when the volume constant but I can use this equation within ideal gas, 

I can derive more useful equation which is this equation which is not given in your textbooks, 

you use volume PV equal to NkBT, so if PV T is V by N is equal to kBT by P and then kBT 

by P, okay so this is the one that is used because most of the time we are working with NPT 

on some book, NPT. 

 

So, in that case this is the Sackur-Tetrode equation, so please ask me if there is any problem, 

if there any confusion in deriving this equation, everything clear, I am not doing it by line by 

line but I have explained to you how taking derivative of that you get this term coming out, 

log is preserved here because first is this term and then you have the k term, everything 

remains log and kBT ln terms remain, then that become 3 by 2 that is why 3 by 2 comes. 

 

Then if multiplied by that is absorbed, the extra term that comes has been absorbed here, 

remember ln e 5 by 2 what is that, what is ln e 5 by 2; exactly 5 by 2, so that term these were 

absorbed the 3 by 2 factor, is absorbed, okay and so that is this is very elegant and nice result 

which as I told you in the beginning that is widely used these days, many, many cases is 

widely used, it is an amazing that Sackur-Tetrode result can find so much use. 
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And what is the more useful than these which is not usually given in textbook is this quantity, 

except one book uses that, that is why when researches write books or give courses this is 

little better, the one place I found, it is not in my query but I found it is in Ben Widom new 

little book for undergraduate statistical mechanics, very popular book just about 100 not even 

100 pages probably. 

 



But he did actually only up to diatomic gas and a little bit of that not beyond that, elementary 

level but he has this equation, I needed this equation because when you are doing nuclear 

theory of nucleation in a constant, this under this condition which is the experimental 

condition right, much of a time, then I needed that that is what I was very happy to be able to; 

I did it myself as very happy, the trivial state. 
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But some time doing something new trivial is very nice okay, so Sackur-Tetrode equation 

there are many applications hierarchical, one is the evaluation of the entropy of ideal gas 

which is used in these, let me write down this, this is in toto from my stat mech book line by 

line probably the mistakes you find here will be mistakes will also be there so, please just go 

through the book once and let me know if there are any mistakes. 
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So, the diffusion is called Rosenfeld scaling D, sometime I put D effective diffusion in an 

interacting system this a e to the power bSex and then Sex is entropy minus ideal entropy, 

these one more applications which I have not written down because it was not written in the 

book, so this is as cut and paste from my book, so these beautiful relation is called Rosenfeld 

scaling, this is the lot of papers are being written on that on the last 5 years or 6 years. 

 

And in liquid or dense gases, these equations works surprisingly well but so one plots this 

quantity against x, so you can understand one thing S ideal is the ideal, the maximum entropy 

that it can have, so because of correlations and order, entropy decreases, so S ex is negative 

more it becomes negative, more the diffusion decreases and it describes the results 

exceedingly well. 

 

And where I was saying that where we have to use it in a gas liquid nucleation, there we 

needed this free energy calculation, G minus TS and when a low temperature gas is going 

into liquid, then the free energy of the gas has both entropy and enthalpy, you can make an 

approximate assumption that entropy of the gas is given this quantity and that is where a 

nucleation and it is widely used and you can, there is a book I forgot the name or several 

books on nucleation, you will see that use, 

 

Now, a beautiful result I think it is done very badly that from here specificity is the 

temperature derivative of entropy right, dS/dT is specific heat TdS/dT and I can do that now, 

I can go, I do dS/dT, do the derivative here and then ln, there is no temperature here now to 

complicate things, so just ln T to the power 3 by 2 plus other things are here, they disappear 

when I take the derivative, I just have ln T to the power 3 by 2. 

 

So that becomes just like before 3 by 2 and ln T becomes 1 by T and then I; it comes in 

denominator and then very interesting it comes in and leaves by 3 by 2 term just like before, 

then these T removes that T in the denominator, is it clear and then I have 3 by 2 comes from 

these 3 by 2, I have a NkB, so specific heat is just 3 by 2 NkB, when N is the Avogadro 

number, CV=3/2  R. 

 

So, this is the derivation of the ideal gas law, so the 2; these are really beautiful stuff which 

everybody should know by heart because you will use them always, always when you start 

thinking about interacting system, start thinking with the ideal gas. 
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So, PV = RT, CV = 3/2  R , so these are the 2 things that we; so the things that you are under; 

first year undergraduate physical chemistry that comes out from a rather sophisticated thing 

but you of course understand when we introduce such a sophisticated thing, this was not the 

goal of statistical mechanics, this is kind of things on the way, these are kind of rewards you 

get. 
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But that is not you started, you did not start to explain an ideal gas, you start to explain 

interacting systems, we start by Newton’s equation, where there are forces between atoms or 

molecules but these are the way we got and it just makes your life happy that you okay. 
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We understand what you are doing and we are on the right track okay, now some things 

which are really very nice you should know, so example; translational entropy per particle, 

these are huge that is what I am saying. So, neon this is 17.59, these are all given in my book, 

see most of these stat mech books are done not with too much affection or laugh of this ideal 

gas that is a change language to use. 

 

But you should feel good about it, okay and asymptotically I can get the entropy from a low 

density neon that is durable and these are very nice agreement of the; why you chose neon, 

argon, krypton, can you tell me? One very good answer, second exactly, exactly, so they are 

the good example of ideal gas, so exactly that is a good answer yeah, so agrees with the 

experimental values, okay. 
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Now, if a canonical system gridded into then we can go to grand canonical which we did the 

other day, this is a grand canonical, sum over just mu N kBT right, so these are grand 

canonical partition function ie 
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And then one can get the total number of particles and another expression for a chemical 

potential, this is extremely useful in the density functional theory, exceedingly useful. So, I 

can go from your grand canonical partition function, now I take the grand canonical partition 

with this way to chemical potential, the conjugate number, I get the average number of 

particles in the system, okay. 
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And then I can write it log up and make that into a density, I can bring V here, so N by V is 

density then I take the log then this is extremely useful quantity where chemical potential is 

given in terms of logarithm and you guys know that this is the expression undergraduate 

physical chemistry we use that chemical potential logarithm of density, you remember that. 

 

Of course, we did not understand though Castellon is the best book on physical chemistry 

even Castellon that is where you can understand but even there was no need to it, why did we 

write chemical potential the first term in a non-interacting system lnρ, this is the beautiful 



equation that comes out. So, chemical potential is given in terms of density as a log vector, oh 

lambda is this; lambda is de Broglie length 2ΠmkBT by h square, sorry, thank you very 

much. ie 
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So, lambda is 2 pi m kBT by h square, so let us say m, m, m, m L square by T square, then 

everything else, these also have m L square by T square, so I think this 1/2 that is the lengths 

de Broglie length that comes up naturally, when you do these things a length is always sitting 

there, I could have introduced and I should have introduced there but does not matter. 
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So, this is the beautiful result, gem of a result that chemical potential, so is the change in 

internal energy on addition of an extra particle when the entropy and volume are kept fixed, 

you know so all these things we do not need to do at this point, so we have got these 

important result and then another important result we write it down here. When I studied the 

reason I am so excited I am talking about it, when I studied statistical mechanics, nobody told 

us that these will be so important. 

(Refer Slide Time: 17:46) 



 

And we had to go back every time, chemical potential has to have the dimension of and this 

has to be dimensionless and this has to be dimensional energy okay, always keep a on 

dimension because you know if you cannot do analytical work, I am telling you when you go 

to a postdoc, you will be miserable shape, everybody expects because there they do it from, I 

have seen in my not so bright in American colleagues, my students they are very good in very 

basics. 

( )3lnBk Tµ ρλ=  

Because there has been; they repeat these things from 7th or 8th grade and all the way even 

after going to PhD level I had to take thermodynamics twice and there they take 

thermodynamics 10 times, so they just grind it into you, you better know how to do very 

simple things, okay yes, that is what we will do next. 

 

Microcanonical is that because for getting the microcanonical you need to need the energy 

levels or the micro canonical any way I can do without, a omega you can calculate by 

integration over the phase space, when you do that exactly same result comes out for 

example, I want to get the that is the one I want to do next in a very elegant way, the elegant 

way also allows me to establish connection with; so what is omega? 
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Omega is the volume of the phase space, so that means given a volume V and energy E, I 

have to now, it is a little difficult because say dr1 and I will do that this is a very good 

question that actually brings out why micro canonical is difficult, so I have the kinetic energy 

putting here now but when have NVE, I do not have this term at all instead I have H has to be 

equal to be E i.e H = E that constraint and that is a difficult constraint. 

 

That means I am within a volume in phase space, so I have to impose that constraint that 

becomes very difficult we just did it in our in one of the calculation well, we did it also before 

many times but there is another way of doing it which is that in quantum mechanics gives 

you the energy levels where you can put this constant much more easily that is particle in a 

box and then you can get the micro canonical partition function  quantum mechanically and 

that gives you essentially the same result, okay.  


