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So the first thing is done and this is all done by Gibbs: NVT that means energy is the first 

thing that will exchange. Because it is all-natural that a system will exchange energy with the 

surroundings.  
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So that goes to give you NVT. Gibbs did these amazing things. He must have a very clear 

idea of what was going on. It must have been very- very interesting when you will think of it. 

There is a man alone sitting in Sterling laboratory in Yale. He once went to Europe and came 

back.  The rest of his life, he never left. Many people gave him offer, but he never left.  He 

did not marry.   

 

In the morning, he used to go to his laboratory and in the evening used to come back to home. 

All his entire life, he lived with his sister, who took care of him and that is it. But these are 

very common those days. You know this kind of people like kind of ascetic, highly ascetic 

and dedicated life. So, sitting there he must have this huge clarity of vision that how to go.  

 

So the first clarity and brilliant idea was to go to the ensemble. I give you, again and again, 

the example of the ten water glasses. You know they are all in different microscopic states 



 

 

but their properties are the same. So that would give you the idea of creating an ensemble 

because in one stroke he went from solving Newton’s equation to a distribution function.  

 

That was the whole idea of an ensemble. Then you go to distribution. As soon as you go to 

distribution you can define averages. As soon as you can define averages, you can start doing 

calculations; analytical calculation. Otherwise, you stuck, you cannot solve even 3-body 

problems. Okay? So that was the brilliant beginning of the whole of statistical mechanics: 

these ensembles.   

 

Then he made those two hypotheses.  First one was “time average equals to ensemble 

average.” This, I have explained many times (it follows from the concept of the phase space 

which I think, I did in second-class or first-class). Then he had to make equal a priori 

probability because all these microscopic states have the same energy and there is nothing 

that we know about them other than that they have the same energy. 

 

So there is no other option than that we assume they are equally probable. So there comes the 

equal a priori probability. But then he landed in trouble because the essence of ensembles is 

not taken care of.  But who guarantees that the time average is equal to the ensemble average 

(the first postulate). Because for doing that my system, one system that has to go through all 

the microscopic states. So then all the microscopic states must be visited. 

 

So the concept of dynamics or time-dependent came into Ergodic hypothesis. That is why 

there is a huge school of mathematics. Even today they were working on Ergodic hypothesis. 

A realistic system was shown to be Ergodic first time by a great mathematician Y. G. Sinai 

only in 1982.  They said that the billiard ball model  (2-dimensional discs)  are Ergodic.  That 

was the first time by showing the diffusion exists. 

 

And the main thing is that two trajectories starting together, go over all the space. You might 

have heard beautiful things like chaos and the Lyapunov exponent. All these things are part 

of this Ergodic hypothesis and chaos.  That is why so much interest in chaos. Okay?  

 

Now coming back, so when you relax the constraint of energy, then again I do not have any 

next step to do. That is why I am saying he (Gibbs) must have a huge clarity of vision 

because the only thing that we have, is this thing. So what does he do? He said okay. I have 



 

 

my picture on here board. I put all these members of my ensemble, all the members of my 

canonical ensemble (very carefully, listen), all the systems in my canonical ensemble who are 

exchanging energy the surroundings, I put them against each other and then put them in a 

bath.  

Let them attain an equilibrium. My humongous system (my super system is a homogeneous 

system) now equilibrates at a constant temperature but they are exchanging energy. So all of 

them are at different energy states. So, these now become my one super system. Now, I make 

an ensemble of this super system. So this super system is now isolated completely after the 

initial bath. 

 

I hope you get the picture now. So, now I do a super ensemble of my super system. But the 

super system is now characterized by a constant number of particles (the total number of 

systems in my canonical ensemble, which is part of the super system, multiplied by the 

number of particles in each. Similarly volume, similarly the total number of particles. So 

there are constraints. 

(Refer Slide Time: 05:54) 

 

Now I want to write down the partition function. So this is the distribution, I discussed last 

time. This was the one are we considered in the microcanonical ensemble. In microcanonical 

ensemble, I have considered a system which is characterized by 4 energy levels, and also N = 

4. Volume does not come here. It enters through these energy levels. 

 



 

 

I hope you understand, like for particle in a box, remember, 
2 2

28

n h

ml
 = , l is the length. So 

energy spacing comes through.  

 

So, I have four systems, so this is my microcanonical ensemble with 4= , all right? Now I 

allow it to have different energies. As soon as I do that, these different states become 

available to it. 

 

So canonical ensemble has many more states available to it. Now, immediately I realize that 

not all of them will have equal probability. So now I need to find out how to talk which is 

more probable, which energy is more probable. 
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And that is now done by saying okay; n is the number of particles in system j with energy Ej 

and add over that,  you get the total energy in my super ensemble.  

(Refer Slide Time: 07:37) 



 

 

 

So n, remember n is again the number of particles in energy state Ej, in my super ensemble. It 

is a bit complicated because there are two layers that we are doing.  nj is the number of 

system in energy state Ej and then this is the way of combinatorics. 
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But these combinatorics has to be maximized with the constraints. 

 

So these are the constraints:  
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j
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j

n E E=  

And I can define now the probability. Remember the question I was asking, so what is the 

probability? Now, all the energy levels are allowed, what is the probability? Now, what will 

be the condition that will determine what energy state is most probable in the system? So I 

have removed all the barriers, the system can be in different energy states. 

 

I have still the constraint of number and volume in a super ensemble I have constructed. 

What is the condition that will tell me what is the probability of a given energy level? Now, 

energy levels are allowed energy levels are allowed. So what is the condition that will 

dictate? No, no that is the outcome.  But without doing Boltzmann distribution, you take a 

guess, very simple, it will be the arrangement which will maximize this.  

 



 

 

These are amazing things, really amazing and even now it never fails to surprise me that 

these holes with enormous accuracy one in 1023 or probably whatever that kind of number, 

this law of maximum entropy, the law of the maximum number holds such accuracy. It is just 

amazing! That because these are called laws of large numbers that come into play. So by the 

time you have some hundred particles or thousand particles, amazingly this distribution kind 

thing will be there.  There is a force constant, of course, we will discuss that. That kind of 

zoom scene and it is essentially connected with a very deep level to the stability of the system 

and that is where  Statistical Mechanics gives you a real insight into natural systems. That’s 

how things work and is a mind-boggling. 

 

So now I can define the probability of my system in a energy level, that is the probablility Pj.  

That is why I asked the question because I go for Pj and the only principle I have to maximize 

entropy ( the maximum  ). So this nj is the number of systems in energy level Ej and now 

that particular energy level, my super ensemble can be distributed in the ways. So then this 

is the normalization. This defines the probability Pj here. 
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Take a look into that, it is not difficult. But I am saying that we are looking to a higher level 

and when I go to grand canonical ensemble even another high-level will come. But this is 

resting on microcanonical ensemble. Grand-canonical ensemble will be raised on canonical 

ensemble.  

 

Let us say what we are trying to say.  is the number of ways, I can,  like here. Omega ( ) 

is the total number, they might be the same, let me work it out. So given an energy Ej , I have 

number of ways to define j . Alright now, so I now come there. I said it has to be weighted 

by which is this.  So the  ( )jn gives the weight of this.  So in probability, how do you 

go about? We go about, we define a probability, as I did discuss little bit in lecture-2 

(probability and statistics) which is given in my book, I think in chapter 2 itself, where you 

have the concept of the sample space. 

  



 

 

What is the sample space? Sample space is the total number of space that is available to you. 

Like if I toss a coin, then the sample space is two: head and tail.  If I throw a dice. then I have 

the sample space six. Then it is the total number of the sample space, that is so. Here, the 

sample space is defined by the total number of microscopic states that is available, not the 

total number of systems. So you remember the Venn diagram we draw so that is the reason 

should be . Is it clear? It is a good question.  now we have to go. What do we do? 
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Now we have to go to what we did? Now we have to do Stirlings approximation 

( ln ! lnN N N N − ). If you do that you get this quantity here, 

ln ({ }) ln lni i i i i

i i i

n n n n n
   

 = −   
   
    

This is the thing that we have to maximize but you have to maximize it with this constraint. 

(Refer Slide Time: 13:38) 



 

 

 

After that, we have the very important thing,  which I would love to talk but it would take one 

class. This is called the method of constant variation or method of Lagrange’s multiplier 

because it was done by Lagrange. This essentially says that you are maximizing something 

but you put a constraint to it.   

 

For example, you want to have a certain distribution, but you put certain conservation 

condition of the distribution and these are the conservation condition.  Now, the way that 

Lagrange’s multiplier goes, is to put the constraint in the following form so that you can see 

very easily.  
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i
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 
 
 
  is constant because of the total amount of energy.  

 

Because that is my super system, so the super system is the microcanonical system, that has 

constant energy,  so 
i i

i

j

n E

n

 
 
  
 


will again be 0. So the way the Lagrange’s multiplier works 

is that you put the constant in the following form, that the whole thing is. So this is the one 

you want to maximize but with respect to this constraint. In the book, in the appendix, I have 



 

 

described little better. So when you do that we get this equation when do we take this will go 

over because this quantity. 
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Is this quantity and you can take the derivatives and then you get this is the condition taking 

the derivative this equation 17 then you get the 18 comes out.  

*ln ln 0 ; 1,2,...i j j

i

n n E j 
 

− − − = = 
 
  

This is actually easier of the things that you have done here and then.  
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You can easily see that.  This is the distribution that comes out because just I have taken ln of 

that and this that comes out. 
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 I sum over this. So, star (*) is there to denote that this is the most probable distribution. And 

at least, what I was telling that it was though it is the most probable, it works with the 

amazing accuracy. So I sum over that, I get the total N. and then  

jE

j

e e
 −

=  

  

And then Pj , the probability is this 
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So this is what the probability that you are telling that 
*

jn

N
 (N is the total number of systems in 

my microcanonical ensemble). So, you get now, this is the probability of getting my system 

in a jth energy state.  

 

So j is the index of the energy state. So Pj is the probability. You recognize two things (a) this 

is the, our Boltzmann distribution. But we have not yet proved that 
1

Bk T
 = ,  beta ( ) is just 

in a constant parameter here.  
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That is why it is called the method of undetermined multipliers.  At that level they are not 

determinative, they are introduced as constants and we have to determine them with the time. 

So, this is the quantity that comes here as the normalization is the partition function. 

( , )
( , ) jE N V

N

j

Q V T e
−

=  
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This is the one of the most important quantity in equilibrium statistical mechanics. But this is 

not just Boltzmann factor but sum over all the energy levels.  The total weight is this 

( , )
( , ) jE N V

N

j

Q V T e
−

=  

This is equivalent to Omega ( ) , exactly equivalent to Omega but in the canonical ensemble 

where the difference between this and  microcanonical ensemble is that here I have all these 

different things.  

 

And in microcanonical ensemble I just have Omega ( ) , total number of states but in 

canonical ensemble each of these states is weighted by beta ( ) . So they are weighted by 

beta and that is this is the weight. now I can have a degeneracy here, but that we will discuss 

later. So this I am not going to do.  

(Refer Slide Time: 18:33)  



 

 

  

So now the most important thing, which I think we will just do a little, then probably stop. 

Because I think how long this kind of heavy class can go on.  So what the next thing is that so 

we have the following, this is microcanonical.  
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So then the way we write is 
( , )

( , ) jE N V

N

j

Q V T e
−

=  this the common way of writing the 

canonical partition function. All the energy levels, you can have 1 or 0 does not matter.  This 

is determined by V and so very interesting. So for temperature we will show that 
1

Bk T
 = , 

the temperature comes through that. And the total number of particles is determined by the 

volume. This quantity (Q) is a lot of interest,  a lot of insight can go into that but I will 

discuss a little later. So what we need to do now. 

 



 

 

Two things we need to do: (a) that we have to establish the thermodynamic relations. We 

have done how thermodynamics follows from entropy. That was easy because we knew these 

things. Once we have the entropy, we can calculate other thermodynamic properties. Of 

course, we have to establish entropy by correspondence with Euler equation and the relation 

with Omega. but once we have that we know how to get temperature, 
,

1

V N

S

T E

 
=  

 
is the 

temperature, that is a well-known relation. 

 

Then we know the temperature, expression of pressure from entropy, expression of chemical 

potential from entropy. It is not the way you usually think about it but microcanonical 

ensemble gives you those relations. Now we have to define similar relations in the canonical 

ensemble.  
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So that is the idea now.  So, we start with defining an average energy, so this is the average 

energy,  

( , )
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E e
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that comes out of my distribution and distribution is Pj.  Pj is the probability of the system in 

energy level j,  so this energy of the jth energy level. These are the standard definitions. If this 

is the probability, then I have the partition function. 

 



 

 

Again so,  partition function Q is actually measure of the sample space. So all the averages 

will be determined with respect to this. This is the total weight of the sample space. So just 

like Omega is the weight of the phase space of the system (in microcanonical ensemble) and 

all our averages are calculated with respect to this quantity;  in canonical ensemble, this  (Q) 

is the weight of the system.  
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So, a system characterized by NVE has a weight, that weight is given by entropy or rather 

given by Omega, and then ln  is the entropy ( )lnBS k=   . Similarly in canonical 

ensemble,  this  (Q) is the weight of the system. So that is the way to talk of partition 

function. It gives you the weight of the system. That is why we maximize the weight or 

minimize the weight.  

 

 So now, we then again play a very interesting trick here that I will probably not get to do 

fully.  But dE  trivially from here to here. 

( )j j j j

j

dE E dP P dE= +  

 Now, as I say, one now uses a very nice trick, which is that we use the definition of Pj.  and 

then Pj is defined by 
( , )

( , )

E V T

j

N

je
P

Q V T

−

= . So dPj is then written as I can take d of the left hand side 

Pj then I get these two terms so lnPj, so Ej on the other side is in the numerator, the exponent, 

so this is in the exponent. 
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So I can take d of that differential. Here so, then this comes out and then I get do I take log 

first then I took the differential I take the log so in ln P,  the way E comes out beta E and 

become so beta ln Q so I have a expression for E that I put it here. 
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lnPj by lnQ then dPj comes the dPj the differential will come later then I have this term I 

write Pj as dEj. 

1
(ln ln ) ( )

j

j j j N

j

E
dE P Q dP P dV

V

 
= − + + 

 
  

And then, we know the condition that sum over Pj is 1 1,j

j

P =  because it has to be 

somewhere, because this is probability of being in the energy state. I had about everything 



 

 

that is normalized that is also come from this definition earlier. Tell me if you have any 

problem?  
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And if that is so they sum over dPj is 0 0j

j

dP
 

= 
 
 , where I take dPj is 0. This is the thing we 

use constantly then we go back and we use, you know, the relation with entropy which same 

as this relation lnB j j

j

S k P P= −  . You know this? Do I have to explain this or not? Yes or no? 

But tell me then, so this is the thing actually what happens. This is same as this because in 

microcanonical ensemble all are same.  

 

This is what some information entropy and all the things but they are all the same in this kind 

of setup.   

lnB j j

j

S k P P= −   

1
. ln
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B E

E

B

S k N
N

S k

= 
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So is it kind of it a same generalized of these things to be energy levels. And then I can do the 

dS this quantity, and I get this equation  

ln ( / ) lnB j j B j j j j j

j j j

dS k d P P k P P dP P dP
   

= − = − +   
   
    



 

 

One can work it out that you get how these things  work. So these two equations, I believe  as 

this can be combined to get this entropy is now written as TdS=  dE + pdV.  

 

Now, these two equations can be combined to obtain 

 
1

( ln )j j

j

d P P dE pdV


− = +   

If we compare this with  

 TdS dE pdV= +   

We get,  

1
lnj j

j

TdS d P P


 
= −  

 
  
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Then the first relation with thermodynamics is  

1
lnj j

j

TdS d P P


 
= −  

 
 . 
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At the end of the day, you are defining so what is this here let me describe this little bit, so as 

I was telling I forgot his name.  
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So, I have a phase space and what is the phase space as I explained that the total number of 

states in the system is a phase space always. Now that phase space is now partitioned. The 

total space constitutes, say I, for example, bias my coin if I bias my coin then I can make 

head and tail becomes different. And then there are two ways now look into it that the biasing 

that I do that probability has to add to something that is my sample space.  

 

That is the question he was asking, that is also equal to total N and in this case, it will be two. 

So the but by the biased probability that had to add up to 1 also, total number of space so here 



 

 

this quantity is the giving that total number of space. So I have this is I have partitioned my 

system which is given to me that all the defined energy levels,  I have partitioned my whole 

system in my configuration space so all different energy levels are there.  

 

This is my sample space and each of them given by microcanonical ensemble because all of 

them is constant energy. So  this is now if these are my microcanonical so I finding for each 

of them Omega each of them on finding Omega but now so this is an energy level say you 

want to say 10 this is 12 this is 14 all this so I say now go okay? 

If I give you energy level 10 in my diagram. How many ways I can do it? That is this Omega. 

 

So, now look at this so this partitioning so now I have to add up all the counts that I get here 

and that I have to get the total sample space like in Venn diagram that total sample space is 

this quantity now I have to go back and say okay this has a way these energy 10 has a number 

with it which is number of ways I can do 10 in microcanonical ensemble that quantity is this 

quantity. 

Okay, this is very neat and clean where Stat. Mech. part is very clean, where one tends to get 

confused sometimes when the interface with the thermodynamics comes. Because they 

always think that Stat. Mech.  interface is still a little rugged, there is always a little 

approximation that is made there, so that is where little bit ambiguity sometimes crop seen. o 

we will meet again at and we will start from the thermodynamics part and dS= dE + pdV. So 

we will finish canonical ensemble and start the Grand canonical today. 

 

Tomorrow I will hopefully start doing the fluctuations, at least half towards the end of 

tomorrow morning. That is the most interesting thing in my a book in the initial title I have 

“realization of promises” that statistical mechanics has. See the difference between quantum 

Stat. Mech. is the following : in quantum, I do Schrodinger equation,  no derivation is 

required. Then H E=  , I can write H as 
2

( )
2

p
H V x

m
= + .  

 

Then that is a differential equation.  Now I put it in a V(x) equal to harmonic oscillator 

potential.  I solve, I immediately get experimental observable quantities which is the 

vibrational spectroscopy, the lines.  If I make a little distortion because of rotation, I get what 

is QR branch which is exactly experimental. Similarly you do particle in a box, you know, 

you go to conjugate polymer.  



 

 

 

So at it almost trivial level you get results, which are connected to experiment and 

spectroscopy. That is why spectroscopy came first, quantum came later. Statistical 

mechanics, on the other hand, you have to do a lot of work, go through the whole postulates 

which is suddenly far more non-trivial than writing down Schrodinger equation. Of course, if 

you go how Schrodinger did it in his original paper, if you read, it will be a lot of fun. 

 

That how we argued, which was given in the first edition of Berry, Rice and Ross.  I used to 

have all his original papers at one time, that is why I knew that he did everything. He did it 

from De Broglie wavelength, De Broglie hypothesis. He does not do that operator, that was 

done by Dirac. History is this very interesting. So there was a formidable thing that went on, 

photoelectric effect, blackbody radiation, Planck’s theory that led to quantum mechanics. 

 

Here Maxwell, then Boltzmann but Boltzmann is so difficult we cannot work out Boltzmann 

equation in a class so we start with Maxwell.  

 

Then okay Boltzmann tired and did lnBS k=  . Then comes Gibbs, this formidable wall of 

the postulates,  microcanonical, canonical, grand canonical then comes to applications. But 

the first applications are actually the fluctuations which just the I think one of the linear 

response, that is one of the most fundamental things of our natural science is the response 

functions that we will be able to do tomorrow. 

 

 


