
Quantum Chemistry of Atoms and Molecules 
Prof. Anindya Datta 

Department of Chemistry  
Indian Institute of Technology – Bombay 

 
Lecture-51 

Hartree - Fock Equations and Self Consistent Fields 

 

We are inching towards the climax of this very interesting discussion about many electron atoms 

and to keep things simple our discussion has been limited to helium and that is how it is going to 

be for this course. We have talked about variation method we have talked about perturbation 

theory. Today and may be in a couple of more modules or 1 more module we are going to talk 

about Hartree-Fock equations and how Hartree-Fock equations are handled by using something 

called self consistent fields. 

(Refer Slide Time: 00:50) 

 
And what you see here is from wikipedia its an algorithm of how this self consistent fields are 

used to handle Hartree-Fock equations. So, we will slowly see how it makes sense what I would 

like you to note now is that it is an iterative method. You have to go around do the calculations 

again and again and again and then keep improving your results; that is in a very, very simple 

manner how it works.  

(Refer Slide Time: 01:18) 



 
So, far what we have been able to achieve is that by using a variational method for helium we 

have been able to reach what we have talked about earlier the effective nuclear charge. We had 

written down our Hamiltonian in atomic units and the trial wave function that we are using is 

very simple it is the same kind of a function that we had talked about earlier that we encountered 

during orbital approximation psi 1s is the same orbital that you get when you talked about 

hydrogen atom. 

 

The only difference is that one of this Psi 1s wave functions is written in terms of the coordinates 

of electron number 1 the other is written in terms of coordinates of electron number 2 that is all. 

So, using this we defined this functional epsilon as integral phi h hat phi over all space in this 

case over r let us say or r theta phi whatever it. Now the thing is we used the atomic number z as 

a variational parameter and we did that consciously because we know that the atomic number 

seen by an electron in the presence of the other is less than the full value that is there. 

 

So that is why we expect that the value of z will keep decreasing one way of doing it is taking z 

minus sigma the other way of doing it is by taking a fraction. So, here we are sort of taking it like 

a fraction but then of course we can subtract it from the original atomic number and get the 

effective atomic number get the shielding constant rather. So, this is a variational parameter so 

what we do is we minimize epsilon with respect to z and at the minimum value of it we say that z 

is equal to z effective. 



 

So z effective turns out to be 1.6875 and hence 1 can calculate sigma and E min turns out to be 

minus 77.49 electron volt which is close to the actual value but well not close enough. If it was 

close enough then we could have closed the discussion right here.  
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Next we said that it makes sense to look at ionization energies because when we look at 

ionization energies the fact that we do not really have an excellent agreement is highlighted little 

more. So, we see that the difference in the number that we get using variation method and the 

experimental number is about 1.5 electron volt which is sort of the strength of a chemical bond, 

so it is non trivial right. So there is room for doing better. 

(Refer Slide Time: 04:02) 



 
And in trying to do better what one does first is that one can use more general trial wave 

functions. There is no need of sticking to hydrogen atom like wave functions. So, the first kind of 

wave functions that one can use are Slater type orbitals there are still one electron wave functions 

that is why you call them orbitals. So, stereotype orbitals are functions of r theta and phi as usual 

we could write them in terms of x y z but as we know it makes more sense to write them in terms 

of spherical polar coordinates it is easier to handle that way. 

 

And that turns out to be a number normalization constant multiplied by r to the power n - 1 

multiplied by E to the power minus zeta r instead of z we have written zeta where zeta is a 

variational parameter and that is multiplied by an angular part. So, we have something similar to 

the hydrogen atom wave functions once again we have a radial part multiplied by an angular part 

but something is missing here right. 

 

What is missing? What is missing is that likewise polynomial remember likewise polynomial 

that polynomial is not even here right. We have an exponential decay in r we have this r to the 

power something and we have the angular part right. So, here not only is zeta the variational 

parameter but n is also a variational parameter and we discussed this in the previous module. 

When we talk about hydrogen atoms n can only take up integral values not so when you use 

these as starting points as trial functions. 

 



You want to play around with n as well because you do not really care too much about whether 

they are integral or not. So, you are going to get values of n something like.9.8 whatever. Now so 

when we use this product of theta orbitals as trial wave function for variational treatment we get 

a value of E of -2.8617 atomic unit and ionization energy of 23.4 electron volt which is called the 

Hartree-Fock limit. 

 

For leaving this discussion let me just reiterate that first of all these zeta type orbitals form a 

complete set however the radial parts are not orthogonal to each other precisely because that 

Laguerre polynomial whatever polynomial it is that is missing. Remember orthonormality in all 

these wave functions we talked about might be for your rigid rotor, harmonic oscillator, 

hydrogen atom. All the orthonormality well orthogonality came from the polynomials that were 

present there Laguerre polynomial, Legendre polynomial and so on and so forth hermite 

polynomial.  

 

So, since the polynomial is not here they are not orthogonal to each other let us remember that 

we are not working with orthogonal functions. And as we said earlier there is no radial node 

again because there is no polynomial equate this to 0 where will it be equal to 0 at infinity 

nowhere else. But you can have angular nodes because the angular part is there and there is no 

guarantee that the angular part will be such that it would not be equal to 0 at some value of theta 

some value of phi right. 

 

So these are close to hydrogen atom wave functions but not quite and they include variational 

parameters.  
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The other kind of orbitals that I want to just mention here are Gaussian type orbitals these are 

very important then the starting point of well I said it 2, 3 times already but there are starting 

point of computational chemistry in big way. So, much so that the perhaps the most popular 

quantum chemistry computational quantum chemistry program that is used worldwide is called 

Gaussian this is where it derives the name from. 

 

From Gaussian type orbitals so the difference between Slater type orbitals and Gaussian type 

orbitals is that in Gaussian type orbitals you do not use an exponential function rather you use a 

Gaussian function it is not E to the power minus zeta r rather it is E to the power minus alpha r 

square again alpha is a variational parameter and n is a variation parameter as well the advantage 

of using Gaussian type orbitals you might remember we had shown at one place when we used 

exponential function. 

 

And no when you use the Gaussian function actually there was not a good match at the top but 

then you can use a lot of terms and take sums and make up for that. So, once again is a complete 

set and once again radial parts are not orthogonal to each other precisely because the polynomial 

is missing. For the same reason there is no radial node. Now when you use this Gaussian type 

orbitals what you get is if you use one orbital you get very poor measure of electron density near 

the nucleus and that we have discussed earlier, remember. 

 



Because if you try to model 1s, 1s is like this and Gaussian has a some something like this. So, 

poor measure of electron density not only near but also very far away from the nucleus. So, to 

make up for that what do we do we do what we have discussed already we take linear 

combinations we take a large number of GTOs use linear combinations and that brings in an 

additional or not un additional, un additional type of variation and parameter in the form of the 

coefficients of these terms. 

 

Coefficients also become variational parameter so that way more parameters we are happy in any 

case we have upper limit theorem we cannot do better than the best we cannot go below the 

actual energy. So, we happily add terms to the extent that our computational power allows us. 

And this opens up the field for more exotic basis functions. If you actually use Gaussian or 

Gammas or any other computational chemistry program you will see there are lot of basis 

functions that you choose from and different basis functions basic sets are good in different 

situations. This here is the beginning of all that the tip of the iceberg. 
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Great with that background let us now discuss how this Hartree-Fock equations for helium come 

and how they are handled once again we are not really going to try and write down every 

mathematical step because that would be too much and it makes no sense also. You have to 

remember a lot of things? No, what do you have to remember this, this what is written here the 



wave function used in Hartree Fock method is still within the ambit of orbital approximation 

please remember this. 

 

It is a product of 2 1 electron wave functions. Hydrogen atom wave functions are not that will 

come to later but the orbitals 1 electron wave function. So, what we do is first of all we note 

something, we note that the probability distribution of electron number 2 is phi star phi dr 2 

electron 2 right. So, this is phi the orbital written in terms of coordinates of 2 electron number 2 

that is r 2 when I write r in bold letter what I mean is that that could mean r theta phi or x y z or 

something like that it just does not mean one coordinate. 

 

It means coordinate system combination of all the coordinates for electron number 2. So, capital 

R would mean r 2 theta 2 phi 2 something like that or x 2 y 2 z 2 so phi star phi d r 2 as we know 

gives us the probability distribution of electron 2 phi star phi gives probability density. In case 

you are confused about this please go back and have a look at the discussion we are done while 

talking about hydrogen atom orbitals few weeks ago. 

 

Now since this is the probability density what happens if I multiply it by electron charge yeah I 

should get charge density. So, this probability density is a measure of what is in classical 

mechanics called charge distribution that is a very important starting point of Hartree-Fock 

method. So what we do next is that we write down an expression for the effective potential 

energy of electron number 1 at point r 1, r 1 theta 1 phi 1 R well not capital sorry bolt r 1 bolt r 1 

means a particular point characterized by say r 1 theta 1 phi 1. 

 

So what is the effective potential energy of electron number 1 at its instantaneous position which 

we denote by bolt r 1 due to electron number 2 so what is the potential exerted by electron 

number 2 on electron number 1 at an instant at the position of electron number 1 denoted by bolt 

r 1 I have said it I have done as many permutations and combinations of the words in that 

sentence I hope you understood 1 of them. 

 

So this effective potential what will it be we all know the formula for potential energy from 

electrostatics. If we relate it to our knowledge of quantum mechanics this is what it will be, we 



call it U 1 effective at r 1 that would be equal to integral phi star r 2 1 by r 1 to phi r 2 what is r 1 

2 r 1 2 is a separation between electron number 1 and electron number 2. So, this is the average 

value of the potential energy that we get and we call it the effective potential. 

 

Of course if you could measure at different times of course you would get different values that is 

why as we know we in quantum mechanics we only handle we only work with average values. 

This is the effective or average value of potential of electron number 1 in its own position due to 

the presence of electron number 2 because they are going to repel each other right. So, this is 

how we define U 1 effective great knowing that can we write down an effective 1 electron 

Hamiltonian for electron number 1. 

 

What is Hamiltonian? Total energy operator right, so total energy operator would involve kinetic 

energy as well as potential energy. If we talk about a 1 electron system kinetic energy is given by 

that minus del square by 2 in atomic unit right minus h cross square by 2 m into del square so if 

you write in atomic units it is just minus half into del square that is kinetic energy. For 1 electron 

system what is the potential energy just 1 by r or 1 by r 1 in this case. 

 

What is the additional term I get in this effective 1 electron Hamiltonian for electron number 1 

for helium this U 1 effective also has to be included right. So, the effective Hamiltonian for 

electron number 1 one would be minus half del 1 square minus z by r 1 this is for the attraction 

of the electron with the nucleus plus U 1 effective at r 1 this is our effective 1 electron 

Hamiltonian remember 1 electron. 

 

So we are going step by step we are building the problem. So, now that we know the 

Hamiltonian it is very easy for us to write Schrodinger equation whether we can solve it for now 

or not that is a different question altogether we will cross that bridge when we come to it but we 

can write right. So, the Schrodinger equation that we can write is going to be well H psi equal to 

E psi we know what psi is is a product of the 2 1 electron wave functions. 

 

We know what the Hamiltonian is effective 1 electron Hamiltonian so we just write the 

Schrodinger equation like this. Remember this Schrodinger equation for 1 electron so I am not 



using the product here so I had gone and I got a little distracted 1 minute ago sorry so I am just 

working with the 1 electron wave function here. So, this here is your Hartree Fock equation and 

this Hartree-Fock equation yields the best orbital 1 wave function that you can get for helium 

orbital wave function.  

 

When we talk about 1 electron wave functions when you want to retain the memory of hydrogen 

atom then Hartree-Fock equation works best. In more advanced theories we first check the 

concept of orbitals and we go ahead and so I have heard practitioners of quantum chemistry of 

now saying something that would seem to be perhaps very cheeky to you I have heard them 

saying there is no such thing as orbitals. Let us not get so advanced right now, for now we will 

use orbitals it works fine for us, great. 

(Refer Slide Time: 17:34) 

 
So, now that is the equation that we wrote from sort of common sense you can arrive at the same 

equation we are not going to go all the way in this discussion but will still go through this 

because it introduces to us very important quantity. You could arrive at Hartree-Fock equation 

from variational principle also, how? You start with this trial wave function then you define 

energy what is energy expectation value integral phi r 1 star phi r 2 star left multiplying 

Hamiltonian operating on phi r 1 phi r 2 over all function space. 

 



What is the Hamiltonian we know what the Hamiltonian is in atomic unit all right. So, let us just 

plug in this expression for Hamiltonian in the expression for energy and see what we get how 

many terms will we get 1 2 3 4 5 what is the first term integral phi r 1 phi r 2 left multiplying 

minus half del 1 square operating on phi r 1 phi r 2 what happens when this minus half del 1 

square operates on the product of phi r 1 phi r 2 phi r phi of r 1 phi of r 2. 

 

Phi of r 2 is not a function of r 1 right so as far as this del 1 square is concerned it is just a 

constant so it would come out. And del 1 star square minus half del 1 square would operate on 

phi r 1 to yield the kinetic energy which would would be a constant and it is important to 

understand that this what we have written in bracket notation is really a double integral yeah so 

just write it. So, this thing is I will write it then erase it also because otherwise it will overlap 

with something else. 

 

This is really equal to integral I will write 2 integral signs 1 for r 1 one for r 2 phi of r 1 star phi 

of r2 star then we have the Hamiltonian operating on why did I put a bracket there phi of r 1 phi 

of r 2 d r 1 d r 2 right and this Hamiltonian that we have is entirely well we have something the 

first term in Hamiltonian is entirely in terms of 1. So, if I just take the first term I do not take all 

of h but I just take the first term then it is going to be something like this minus half del 1 square 

and you understand that del 1 square is going to operate on phi of r 1 but not on phi of r 2 right. 

 

So this double integral conveniently becomes a product of 2 integrals integral of phi of r 1 star 

multiplied by minus half del 1 square operating on phi of r 1 d r 1 the first integral multiplied by 

the second integral is phi of r 2 star multiplied by phi of r 2 d r 2 all right and the good thing is 

that if this 1 is either normalized or we can normalize it so this is going to become 1. So, in the 

first term when we expand this when we expand this Hamiltonian and put in all these 5 terms I 

am actually going to get single integrals instead of double integrals because 1 of them is going to 

get normalized and therefore will be equal to 1 right. 

 

So this is something that I wanted to bring your attention to in case somebody missed it if I 

skipped it and just went on. This one is not really written explicitly in the books that we are 

following by the way today we are following Macquarie’s book I will at the end of the 



discussion I will have a word to say about something that is there in your Pillars book but will 

not do it explicitly. So, I have reduced that equal to sign also forget it all right. 

 

So this is what we have this is the first 1 I have not got rid of phi of r 2 yet. So, integral minus 

half minus half integral phi of r 1 multiplied by phi of r 2 del 1 square phi of r 1 phi of r 2 minus 

a similar term but this time in terms of electron number 2 and not electron number one the third 

term will be minus z so this 1 right. Again the same thing will happen once again is a double 

integral and we can make it a product of 2 integrals 1 in terms of 1 one in terms of 2 and the 1 in 

terms of 1 sorry the 1 in terms of 2 is going to become 1. 

 

Similar thing here the only difference is that this time it is the turn of the integral in r 1 to 

become one so the triple product in electron number 2 terms is going to survive well is going to 

remain like that and what is the last one? In the last one we cannot separate like that no matter 

how much we like separating this 1 and 2 well I have not shown you the separation yet I will 

show you in a minute no matter how much you might have liked it we cannot do it here because 

here we have 1 by r 1 2 separation between electron number 1 and electron number 2. 

 

There is nothing we can do about it so this has to contain terms in 1 as well as 2 it has to remain 

like that. So, the first one what we will do is we will collect the terms in 1 and here you see we 

have got rid of terms the factor of two because that integral has become equal to 1 by 

normalization. So, this integral becomes integral phi of in r 1 star left multiplying minus del 1 

square by 2 minus z by r 1 operating on phi r 1, what is it? Do you recognize it? Do you 

recognize it? It is actually your it is a it is like expectation value of energy for a 1 electron system 

is not it yeah this is the kinetic energy term of Hamiltonian is a potential energy term when the 

the only thing that is there is attraction of nucleus and electron. 

 

So if the second electron is not there then this is going to be the actually the expression for the 

energy of electron number 1. Similarly the second term in electron number 2 is going to be the 

expression for energy of electron number 2 in absence of electron number one suppose its helium 

ion H plus then this will be the average value of energy. How did I get this remember there are 5 

terms I have already written 4 of them condensed in these 2 terms. 



 

There is a minus sign here there is a minus sign here so this is a combination of 2 terms potential 

kinetic energy potential energy of one this is also combination of 2 terms kinetic energy potential 

energy of 2 right. So, 4 terms are actually written after simplifying after converting the double 

integrals to a product of 2 integrals and finally only 1 integral last 1 remains intact. So, what we 

do is we call this first integral I 1 we had encountered this earlier also remember when we could 

not work out an integral or even when there was some hope of working out an integral later on 

we gave it a name and we worked with it remember s ij yeah or H 11 all those things we are not 

familiar with. 

 

So similarly we will call this one I 1 will call this to I 2 collectively they belong to the family ii 

and this one will call j so I will get I 1 + I 2 + j 12 the subscript means which electron 

coordinates this integral has contributions from the last integral j 12 has is made up of 

coordinates of electron number 1 as well as electron number 2 so it is called j 12 and it has a 

name also the name is coulomb integral. 

 

Now why coulomb integral just think what is it that you know about in which context you have 

heard the name of coulomb coulomb attraction remember coulomb attraction. So, the same thing 

right so electrostatics so coulomb integral essentially stands for an electrostatic interaction well 

repulsion between electron number 1 and electron number 2 not very difficult to see from here. 

So, later on we are going to encounter when we talk about bonding we will encounter coulomb 

integral once again. 

 

Additionally we will encounter something called an exchange integral and as we will see it is not 

possible for us to have a classical mechanical analog of exchange integral coulomb integral we 

can sort of make sense of it by classical mechanics not so for exchange integral which will come 

when we introduce 1 more nucleus right. Now we do not have to worry about it so the way you 

get Hartree-Fock equation from here is that you minimize E with respect to phi and that leads 

you to the Hartree-Fock equation that we have discussed earlier. 

 



So that in a nutshell is Hartree-Fock equation for you will be able to solve it. Do we need some 

trick to solve it will take that in the next module.  


