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Ground Rules: Postulates of Quantum mechanics: Part I

Today we are going to talk about some ground rules of quantum mechanics.  What  we have

discussed so far is how one gets Schrodinger equation and how Schrodinger equation can handle

the wave-like nature of matter. So, today we will start with a restatement of what we have said

already and then from there we will try and see how we can postulate the fundamental tenets of

quantum mechanics.
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The cartoon we see here is fashioned after the famous statement of Einstein which was made in a

letter that he wrote to Max Born which is paraphrased as God does not play dice and as Hawking

had said later on that actually he does and does some more. So, far this is what we have got.
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We have time dependent Schrodinger equation which is essentially the classical wave equation

for de Broglie waves and here on the left hand side we have the operator which is time dependent

on  the  right  hand  side  where  the  Hamiltonian  operator  which  is  time  independent  space

dependent. We have abbreviated del 2 del X 2 plus del 2 del Y 2 plus del 2 del Z 2 by the

Laplacian del square. So, the way to handle this classical wave equation for de Broglie waves

which is  a mixture of spatial  and temporal  coordinates  is to express the wave function as a

product of a space dependent part and a time dependent part and hence use the technique of

separation of variables which is quite well known in differential equations.

(Refer Slide Time: 002:11)



So now when we plug in this value of the wave function into the time dependent wave equation

this is  what we get for our benefit  the space dependent part  is  written in blue and the time

dependent  part  is written in green.  So, not only do the wave functions have space and time

dependent part as we said the operators also have one of them is time dependent and one of the

space dependent.

And here what we see is that we have a mixture and our job is to separate them out. It is not very

difficult to see how one can do that after all ih cross del del t the time dependent operator is

going to act only on Phi of t the time dependent wave function and the space dependent wave

operator is going to operate it only on the space dependent part. So, from the left hand side we

can take Psi n of X Y Z out and on the right hand side we can take Phi of t out here I should say

that n does not mean a quantum number it is just an identifier for the particular wave function we

are dealing with.

So then when we do a little bit of simplification just divide by the wave function on both sides

then now see left hand side is completely green right hand side is completely blue. Left hand side

is purely in terms of time space independent and right hand side is purely in time of spatial

coordinate’s time independent. Now the left hand side is supposed to be dependent on time right

hand side is supposed to be dependent on space and they are equated which means that what we

have is that we do not have a variation.

Both would better be constants otherwise you cannot equate a space dependent equal part to a

time dependent part this  constant w is called the separation constant.  The left hand the time

dependent equation that we have ih cross by Phi of t multiplied by del Phi t del t in fact we might

as well write d Phi t dt here because is no longer a partial derivative and the time is independent

space dependent part that we have is this.

It is very easy to solve the time-dependent wave equation anybody can do it and when you do it

the solution that you get is e to the power minus iwt divided by h cross. Now here one can say

why are we not using a linear combination we are not using a linear combination because we

have the benefit of hindsight but what we can do at this stage is that we can just plug it back and



we have the time and space dependent wave function expressed as Psi n of XYZ the spaceship in

their part multiplied by e to the power minus iwt by h cross.

So, what we have been able to find out so far is find the general form of the time dependent part

of the wave function we have discussed all this in the previous module we are just going through

it once again. One thing that turns out to be very important here is that the operator that we have

an  operator  is  something  that  changes  a  function  the  operator  that  we  have  in  the  space

dependent part is the Hamiltonian operator which was already known in classical mechanics.

(Refer Slide Time: 05:35)

From classical mechanics it was known that Hamiltonian operator represents total energy it is a

total energy operator. So, when we have an equation like this H Psi equal to W Psi we might as

well replace W by E energy and write it as H Psi equal to E Psi. So, we know that this wave

function if we take it and if you even neglect the time dependent part just work with the time

independent space dependent part Psi n of XYZ this wave function represents a particular value

of energy let us call it E n.

We can rephrase it and say that Psi n represents a particular energy eigenstate and it is the time

independent energy eigenstate. So, this is essentially the stationary state that Bohr had introduced

in a different context Psi n represents a particular energy eigenstate and this is time independent.

So, here we have the quantum mechanical representation of the stationary state that was first



introduced by Bohr. But do we have quantization; actually we do not because n can take up any

value.

Correspondingly E can take up any value so we do not really have quantization all we are saying

is that if you know what Psi is you know what energy is but that energy could vary when you go

from Psi 1 to Psi 2 to Psi 3 to Psi 4 energy can vary continually. Discreteness is not achieved yet

that is what will come a little later. But what we get from here is we get an idea of how to go

about framing the ground rules of quantum mechanics and that is what this module is about.
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So you see that we have got Schrodinger equation which is an eigenvalue equation.
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So from here we go to this postulate that first of all for every quantum mechanical; for every

classical variable physical observable there is going to be a quantum mechanical operator. We

have already come across the total energy operator Hamiltonian so it is not listed here but if you

remember what Hamiltonian is it is the potential energy V of X or V of X Y Z if it is three

dimensional problem plus this operator -h cross square by 2 m multiplied by del 2 del X 2 + del 2

del Y 2 + del 2 del Z 2 in case of a three dimensional problem.

And simply minus h cross square by 2 m d 2 dx 2 in case of a uni dimensional problem. So, since

we know that already it is not very difficult for us to understand that the kinetic energy operator

is -h cross square by 2 m d 2 dx 2 in one dimension and this case 3 dimension. Once we know

that we know the relationship between kinetic energy and momentum. Kinetic energy is well it is

easier to handle one dimension to start with.

Kinetic energy for motion along one direction let us say X is given by px square by 2 m in

classical mechanics. So, if the operator of kinetic energy is -h cross square by 2 m d 2 dx 2 it

must  have  come  by  operating  the  px  operator  twice  and  dividing  it  by  2m  with  that

understanding it is not very difficult to figure out that the momentum operator would better be

for motion along one direction h cross square by id dx or we can write it minus ih cross d dx.



If we make it operate twice then what do we get minus, let us take the first one the second one

will give the same result h cross by id dx operates twice so we get d 2 dx 2 and h cross multiplied

by h cross is h square i multiplied by is minus 1 so finally we get -h cross by 2 m d 2 dx 2 so

what we have shown just now is the compatibility in the definition of the kinetic energy operator

and the momentum operator.

We are going to come back and talk a little more about co-operators and their commutivity at a

later stage. For now let us just remember that for every physical quantity that is their quantum

mechanics has an operator. 
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And then the way we get to know the value of the physical quantity is that you make the operator

operate on the wave function and then you get an eigen value equation, how do we know this?

We do not know we are guessing at this point. We are guessing because you have already got an

eigenvalue equation that is Schrodinger equation where the total energy operator Hamiltonian

operated on the wave function to give us back the same wave function multiplied by the value of

the energy.

So that is a specific form of this general eigenvalue equation where A hat of operates on Psi n the

wave function to give us the same Psi n multiplied by a value which is called the eigenvalue. So,



the postulate  here is  that this  is how you go about  trying to find out the values of physical

quantities in quantum mechanics. So, it also says implicitly that the wave function has all the

information about the system.

If one can make an appropriate operator operate on the wave function then we can get the value

of that variable as the eigenvalue provided it can be determined provided it can be determined

might sound a little strange at the moment but once again we will come back to it later on. But

this is where we start from. Of course the other postulate is that if it is a physical observable let

us say we are talking about momentum, it has to be real.

You cannot have a momentum that is something like e to the power minus ikx that can be the

wave function. Wave functions can be imaginary you might remember that some of the operators

themselves have iota h cross by i del del x is the operator for px so when this operates on a wave

function to give a real value the wave function is going to have an imaginary part that is fine but

the eigenvalue this is important to understand.

The eigen function can have an imaginary part and more often than not it has we already said

that e to the power -i iet putting W equal to e is what we are going to get from Schrodinger

equation. So, similarly we will have other eigen functions which are going to be imaginary. But

the eigenvalue can never be imaginary if it is going to be the value of real observable quantities.

So,  another  way of  putting this  is  that  quantum mechanical  operators  must  be hermitian.  A

hermitian operator always has eigenvalues.
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So, another way of saying only real eigenvalues will be observed is that all quantum mechanical

operators are actually hermitian operators. Once again if we get the scope we will come back and

discuss in a little more detail later on why is it that her hermitian operators have real eigenvalues

for us for now let us take it axiomatically.  

(Refer Slide Time: 14:01)

Now we come to the next postulate all eigen functions of quantum mechanical operators are

orthogonal. In fact I had like to restate this by saying all eigenfunctions of quantum mechanical

operators can be represented as linear combination of functions that are mutually orthogonal.

What is the meaning of orthogonality here? Orthogonality means you take two functions take the



complex conjugate one complex conjugate of one multiplied by the other function integrate over

all space you're going to get zero.

So this integral is often written in Dirac bracket notation in which it is written Psi m in the first

angular bracket this bracket the first angular as a first angular vector this is called the bra vector

and this is called the ket vector together it is a bracket. So, Psi m Psi n in bracket essentially

means integral of Psi m star X Psi n x dx overall space. So, what we are saying is if m is not

equal to n then this integral is going to be 0.

Very soon we are going to see an example of functions that are orthogonal to each other. But

why is it called orthogonal it is called orthogonal because if you go back and think of say vectors

well XYZ they are orthogonal right. What happens if you take their products this is the this is the

condition that will be satisfied that is where so the other word that is used for orthogonal is

normal here normal means that when you multiply the function by the complex conjugate of the

other integrate over all space you can get zero that is the meaning of normal in this context.

And this came from the once again remember these are all postulates you cannot prove them but

even a postulate has to have some basis. The basis of this postulate is that if you go back and

think what Schrodinger equation is. It is essentially a classical wave equation for de Borglie

waves.
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And it is known for classical equation that the general solutions are standing waves standing

waves means waves in which the positions of the nodes do not change. So, if you think of a

string if you hold a string on two sides and try to oscillate it. It can oscillate in several ways first

in which there is no node the; we hold it at two ends at the middle the string goes up and down

any displacement from the mean position and a particular value is Psi at x.

Another way of doing it is at double the frequency where there will be a node in the middle the

node will always be in the middle. From the middle to this side what will happen is it will go up

and go down. So, in all other places except the node and the terminal points the amplitude is

going to change with time. So, these are standing waves and standing waves are obtained by

superposing normal modes this is something that is known from classical mechanics.

It  is not normal modes are not something that arrows in quantum mechanics there are there

already a normal remember it means orthogonal. Normal modes are those in which well if you

go back to the analogy of the string normal modes are those in which the total length of the string

is a multiple integral multiple of well half integral multiple of the wavelength. So, let us see, let

us think of this one.

Here we have a half, half wavelength here we see a full wave just think of the wave and the earth

which is on the outside here we have three half waves here we have four half waves that is two



waves and it goes on. So, and what we should have shown here is these standing waves that arise

out of them. Now if we take the lowest one the so-called first harmonic or the fundamental and

the second harmonic it is not very difficult  to see that if we take this function and this one

multiply  them  together  point  by  point  which  means  the  this  function  at  this  point  will  be

multiplied it by this point this function at this point.

Multiplied the two functions point by point and add them what will you get on the left-hand side

from the boundary to the middle the products will all be positive when I am talking about this

phase. On the right hand side the products will all be negative so when we add all the products

we are going to get zero. This is the meaning of normal modes this is the meaning of that integral

of Psi m star Psi m integrated over all space being zero.

It is not very difficult to understand the meaning if you think of this picture. So, this is something

that is known already that the general solution of classical equation gives you classically gives

you  standing  waves  which  are  superposition  of  normal  modes.  So,  what  do  we  expect  for

Schrodinger equation the solutions should also be linear combination of wave functions that are

orthogonal to each other that is what leads to the postulate that we have discussed just now that

not only Schrodinger equation for any eigen value equation pertaining to quantum mechanics the

general solutions are linear combinations of function that are orthogonal to each other.

And this gives us a very useful tool whenever we talk about any system we try to describe it by

using and using a set of orthogonal functions. I started a little bit because I was going to use

another qualifier orthonormal and something else will come to that. And the advantage of that is

that  when  you  have  orthogonal  functions  then;  when  we  have  complete  set  of  orthogonal

functions then using them one can build a complete description of the functions space that they

constitute.

It is very easy to understand in terms of say displacement. Let us say I have displacement a now

some direction I can always break it down as a vector sum of displacement along x + y + z. So,

once I know these three I can talk about the displacement of the particle completely. So, define



any system you need the coordinates. When I talk about position coordinates are x y z when I

talk about a particle in motion a xyz also changes with time if it you can also talk about px py pz.

Similarly when we talk about wave functions we should be able to define them completely if we

consider an appropriate complete set of wave functions that are orthogonal to each other normal

modes that is  what the earlier  postulate  that  we discussed is all  about.  That brings us to an

interesting question that has plagued the minds of people working in quantum mechanics and has

actually transcended the barrier and created ripples in pop culture as well.

The question is that we are saying that there is a superposition of states. So, when you make a

measurement which state do we see? Let us say we make a measurement of some property and

we find that the value of the property is something P.

(Refer Slide Time: 22:24)

The  question  is  what  happens  before  the  measurement  what  was  the  property  before  the

measurement and what is the property immediately after the measurement. So, there are three

views or there were three views about what was the property? What is the value before the

measurement? The first view is called the realist view and this is what Einstein had and the view

was the venue was P immediately before you measure otherwise how did you get P?



But there is a problem with this view and the problem is if this view is correct then Quantum

Theory turns out to be incomplete because if the value was P already before the measurement

why is it that we could not know it, we are working with Psi and working with Psi we can get the

value only at the time of measurement. If we do not know the value before measurement that

means  Psi  is  not  enough  there  must  be  some  other  coordinate  which  people  called  hidden

coordinate.

What is that if it is there then clearly our description is not enough. So, realist view does not

really turn out to be compatible with the principle of quantum mechanics but Einstein was a die-

hard believer of this view and that is why he had written to Born saying God does not create

eyes. The second view was by Bohr and his co-workers this is famously known as Copenhagen

interpretation. It is also called the Orthodox view. And this view says that before measurement

the system exists in an entangled state.

You cannot measure because I mean you cannot know the value because before the measurement

it is a superposition of states, entanglement of states and then when you measure that is when

you see the value that you see you get one of those values, we will come to what it is called in a

moment. And the third view well before going to the third view and this is what we are saying

that measurement produces the value.

The third view is that of an agnostic which says we do not know what it was and we do not care

but that is not such a great view after all. It is sort of an opportunistic view here. So, over the

time due to some experiments performed by Bell in 1964 it is turned out that it is the Orthodox

view that seems to be correct and that is the state of understanding at the moment that the system

exists in an entangled State.

This is something that is not very easy to visualize and that is why it has given rise to a lot of

interest as I said beyond the boundary of scientists. What you see here is a photograph of a play

called Copenhagen this was quite popular all across the world and this was a few years ago a

Tom Walter who is no more unfortunately had brought this play to IIT and a lot of us went and



enjoyed it. This is all about a dialogue between Bohr and Schrodinger that the play depicts and it

brings out the conflicts in the minds of these founding fathers of quantum mechanics.

And the outcome is Copenhagen interpretation that the system exists before measurement in an

entangled state and it is a measurement that produces the value. All right, so what happens after

the  measurement?  Everybody agrees  that  after  the  measurement  we have  the  same value  P

immediately  after  the measurement  because  I  mean if  it  is  not  P then how is  it  that  in  the

previous measurement you had it.

Once you make the first measurement if you keep on making measurements in short succession

you are going to get P. So, this is called wave function collapse which means that there many

wave functions and their entangled before the measurement once you do the measurement if the

system collapses into one particular wave function and continues to be defined by that if you

keep on making measurement. So, this also gives rise to something that is quite popular it says

that in quantum mechanics the property of the observer observable depends on the observer.

How you make the observation which operator you use that is going to tell you which wave

function you will have access to and which value you will see. There is a point by Tagore which

roughly translates  to English as Safire turned green in the color of my consciousness,  Ruby

turned red. I looked at the Rose and said you are beautiful and it acquired beauty. This sounds

very, very quantum mechanical I do not know whether Tagore had come in close contact with

scientists of his time.

I do not know if this was influenced by them but this definitely reminds one about the Orthodox

view and wave function  collapse.  But  the question that  we have not  answered after  all  this

discussion we have said that we have a wave function we have a wave equation all that is great.

We have even said that using the wave function we can find a property if you use the appropriate

operator but the question that continues to bother us even now is what is this wave function?

Once again this question has given rise to a lot of intrigue in the minds of people beyond the

realm of scientists.



(Refer Slide Time: 28:39)

And what you see here is a Google Doodle that came out in December 11 2017 to commemorate

the birthday of Max Born. Whose work went a long way to give us some idea about what wave

function actually is what is the meaning of it? That is what we will discuss in the next module. 


