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Application of Perturbation Theory Anharmonic Oscillator 

 

We are studying perturbation theory we have developed the rudiments of time independent 

perturbation theory already. And we have discussed one very, very simple example which we are 

going to rehash today. Now we go on to another example which is the next step once again it is 

going to be quite easy and this is that of anharmonic oscillator.  
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Now we have learnt earlier in this course that one can talk about vibration of diatomic molecules 

and one can model them using the simple harmonic oscillator model. And we know that we can 

solve Schrodinger equation exactly for this kind of system simple harmonic oscillator and we 

know what the solutions are we are going to revise once again today. But then we also 

understand that this simple harmonic oscillator with parabolic potential cannot really be the 

complete picture. 

 

Because if you think of interaction of two atoms we are talking about diatomic molecules and if 

you want to plot their potential energy we very well know what it is going to be when the two 



atoms are very far away from each other the interaction energy is zero. As they come closer and 

closer and closer nucleus of one experiences the electron of the other they attract each other so 

there is a decrease in energy stabilization until an optimum point beyond which the two nuclei 

discover each other and there is very, very strong internuclear repulsion because of which the 

energy rises sharply. 

 

So this is the actual potential energy curve and so far we have worked with the idealized 

potential energy curve which is a parabola which is all right for small displacements about the 

equilibrium position. But there is no reason why we should be satisfied with that it is not going 

to work in many, many practical examples and also this is a chance to develop our theory our 

understanding of the theory and make it adaptable to more complicated problems. 

 

So that is the scope of discussing application of perturbation theory in describing an anharmonic 

oscillator anharmonic oscillator means one that is not actually parabolic rather for longer 

distances it curves downwards and goes to 0 asymptotically.  
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But before that let us once again remind ourselves what we have learnt about perturbation theory. 

We have learned that you always start with a system for which Schrodinger equation can be 

solved exactly. In the case we are going to discuss today that system is going to be harmonic 

oscillator. This is an unperturbed system and the Hamiltonian of the unpartnered system is called 



the zeroth order perturbation. 0 means 0 perturbation no perturbation has come and the actual 

system and harmonic oscillator for today is something that deviates from the system by a small 

amount, please remember small amount. 

 

It is very important to understand that perturbation theory does not work for large deviations 

from the unperturbed system. So, this perturbed system that we are trying to build a description 

of should deviate from the unperturbed system only by a very small amount then we can write 

the Hamiltonian of the perturbed system as the zeroth order Hamiltonian for plus a first order 

perturbation term. We can write the wave function as the zeroth order wave function plus some 

delta Psi which is also due to first order perturbation. 

 

And E we can write as E zeroth plus delta E where delta is a small change in energy because of 

the perturbation that we have introduced. Now here we write one because we could have or in 

some cases you have to talk about H second, H third so on and so forth. Second order third order 

perturbation might be required. In fact if you talk want to talk about I think the in fact 

anharmonic oscillator I do not have that data today. 

 

But maybe next day I will just show that data to start with people have gone up to 13th order 

perturbation why? So, that we get a closer match to the experimental energies and but to start 

with let us stick to first order. For first order perturbation we have proved that delta E the change 

in energy due to first order perturbation is integral Psi 0 star first order correction to Hamiltonian 

operating on Psi 0 integrated over all space. 

 

Please remember that these two wave functions are one and the same they are not different. And 

now something that I think I mentioned in the passing but we have not written anywhere it is 

better to write it at least once for most of the cases you can write delta Psi as sum over Psi 0 we 

are talking about the vibrational wave functions today that is why I have written V the thing is 

this small perturbation right. 

 

So whatever wave function you generate is different from the original wave function by a very 

small amount. And remember these zeroth order wave functions constitute a complete 



orthonormal set that means if it was three dimensional space x y z complete set you do not need 

anything else. So something like that so some vector in this function space should we should be 

able to express any vector in this function space even though it has deviated little bit by a sum of 

these orthonormal vectors. That is the idea that is why you can conveniently write a linear sum of 

wave functions.  
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Now with this background we have already discussed this particle in a box with a slanting 

bottom means when x equal to 0 potential energy is 0 when x equal to a potential energy is V. 

This is called the perturbation potential and we have derived that this first order correction to 

Hamiltonian well we actually used it, it is pretty straight forward from here its a straight line 0 at 

x equal to 0 V at x equal to a simply becomes x into V divided by a. 

 

So you put this into the expression of delta E we use the wave functions of the unperturbed 

system and we got this kind of expression the delta E is V by 2. So, energy of the nth state is 

given by the energy of the unparalleled state this one plus V by two it is as simple as that. So, all 

energy levels are just offset upward by V by 2 that is all nothing else. So, this is it is not as if it 

has no application you can think of chemical systems where you can actually apply it. And most 

importantly it allows us to get comfortable with our theory due to its own simplicity. 
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Now let us go ahead and talk about anharmonic oscillator to do that let us recapitulate what we 

have studied about simple harmonic oscillators parabolic potential as I said V of x is equal to 

half k x square the unperturbed Hamiltonian is minus h cross square by two mu del square plus 

half k x square. And here I do not remember if I said this already if I have not let me say it once 

again please remember that when you have two bodies m 1 and m 2, mu is more like m 1. 

 

If m 1 is a smaller mass mu is always like the smaller mass when you talk about relative motion 

it is like the smaller mass plus half k x square this is your unperturbed Hamiltonian for simple 

harmonic oscillator, energy of which we know is V plus half multiplied by h cross omega. You 

can change this to h omega because h cross h by 2 pi omega is nu into 2 pi. So, this 2 pi that 2 pi 

cancel and you can write h nu did I say h omega that is wrong sorry about that. 

 

So, h cross omega is the same as h nu and remember h nu what it is I think all of us know. And 

this here is the wave function of a simple harmonic oscillator some constant multiplied by a 

hermite polynomial multiplied by a Gaussian function. So, this is how they look and I hope you 

have figured out why it is that it is ok for these wave functions to go out of this potential energy 

surface its fine that is how we get it great. 

(Refer Slide Time: 09:14) 



 
Now we are going to consider an harmonicity as a perturbation. So, let us bring in a perturbation 

term how do we do it? Well without even thinking much one thing that one can do is that where 

will the perturbation come not kinetic energy in the potential energy. So potential energy already 

is a polynomial of second order and it is usually possible to express this kind of quantities as a 

polynomial of whatever order we want. 

 

It is just that the coefficients of higher order terms in the polynomial keep on decreasing 

otherwise it will be a divergent problem. So, the next term in the polynomial next time after x 

square will be something into x cube I might as well have written c into x cube or something like 

that I am using gamma by 6 because once again this has been solved results are known gamma 

by 6 is something that gives us nice results and this is the convention that is followed in the 

books anyway. 

 

So first order perturbation to Hamiltonian is gamma by 6 x cube let us say. Now let us write the 

expression for delta E. We know what it is going to be integrals Psi 0 star in this case Psi 0 star 

and P 0 are the same multiplied by this first order correction of Hamiltonian operating on zeroth 

order wave function integrated over all space. So, let us write one by one what will I get first of 

all what will come out of the integral sign. 

 



This constant here is under a square root, so from this Psi 0 zero star which is the same as Psi 0 

we will get one square root of something term and from zeroth order Psi the second one will get 

another one. So, first constant that comes out of the integral sign is alpha by pi to the power half 

multiplied by 1 by 2 to the power V factorial V. Do we have to remember this for god's sake no 

please do not do not remember things that are not so easy to understand.  

 

If required you can always look up a book or if it is a matter of examination we can always 

provide the values it is important to understand what is going on. So, this is what we have one 

constant has come out is there any other constant anywhere? Yes, so this is gamma by 6 that 

gamma by 6 will definitely come out, yes. Then we are left with an integral inside which we 

have this hermite polynomial multiplied by x cube multiplied by E to the power minus alpha x 

square multiplied by E to the power minus alpha x square. 

 

So that is E to the power minus alpha x square sorry we have hermite polynomial multiplied by E 

to the power minus alpha x square by 2 and then there is an another one from this second Psi 0, 

so we will get product of two hermite polynomials and E to the power minus alpha x square by 2 

multiplied by E to the power minus half x square by 2 is E to the power minus alpha x square 

that is sorted. 

 

And in addition we have this x cube factor this is integrated over all space limit of x is going to 

be 0 to infinity. So, let us see hermite polynomial multiplied by x cube multiplied by another 

hermite polynomial the same harmonic polynomial once again multiplied by E to the power 

minus alpha x square dx. This is delta E what is the expression for this delta E you can find it out 

by put in putting in the different hermite polynomial expressions and seeing what you get. 

 

At least now I am not going to do that we are going to remember some property of the 

vibrational wave functions of quantum harmonic oscillator. If you remember these are the 

expressions that we had obtained when we discussed harmonic oscillator. If you are a little rusty 

by now on harmonic oscillators I strongly advise that you go back and see those lectures and go 

through those notes and you might refresh your memory. 

 



So if you remember we had come to understand that for odd values of V the hermite polynomial 

is a 1 multiplied by Xi + a 2 multiplied by Xi plus so on and so forth a v e f Xi to the power v 

where v has to be odd, v is odd. So, the even terms are missing. Similarly when v is even only 

the even power survive a 0 + a 2 Xi square plus well a 3 Xi cube Xi to the power 4 no cube so on 

and so forth. Last term is same but do not forget here v is even. 

 

We know this, let us see if it is possible to use the knowledge of what odd and even v’s are to 

figure out at least whether delta is going to be 0 or not right. We keep doing that all the time in 

quantum mechanics that is what we will do. Now when we talked about particle in a box 

remember we talked about symmetric and anti symmetric wave functions. Symmetric and anti 

symmetric with respect to inversion we replace x by minus x Xi by minus Xi does the wave 

function change sign or does it remain the same. 

 

If it remains the same then it is symmetric, if it changes sign then it is anti symmetric. So, you 

can see here what we have Xi so replace Xi by minus Xi what do you get minus Xi, Xi cube 

replace Xi by minus Xi will get minus Xi cube. So, this for odd v's it is not very difficult to 

understand that the hermite polynomial is anti symmetric with respect to inversion. Similarly for 

even values of v you only get things like Xi squares Xi to the power 4 so on and so forth. 

 

So if you replace Xi by minus Xi square of minus Xi is the same as square root of Xi so this is 

symmetric with respect to inversion. And whatever it does not matter please see that what we 

have here is a product of the same hermite polynomials actually square of harmite polynomial. 

So, you multiply an odd anti symmetric function by an anti symmetric function what do you get 

you get a symmetric function. 

 

You multiply a symmetric function by a symmetric function of course you get a symmetric 

function. So, what we understand here is that no matter whether v is odd or even no matter 

whether the hermite polynomial is symmetric or anti-symmetric the product is definitely 

symmetric. Why are we talking about this symmetry and all of a sudden just be there for a couple 

of minutes will reach, all right. 

 



What else is there E to the power minus l alpha x square you replace x by minus x does anything 

change minus x whole square is equal to x square. So, even this factor is symmetric no problem 

with that what about x cube replace x by minus x it is not very difficult to see that x cube 

changes sign. So, this is an anti symmetric function. So, now you have three symmetric functions 

multiplied by an anti symmetric function what is the total integrant then? 

 

Is it symmetric? Is it anti symmetric? It is not very difficult to see that the integrand is anti 

symmetric and as we have discussed earlier if the integrand is anti symmetric then of course the 

integral is 0 because if it is anti-symmetric then you just perform an inversion I becomes minus I. 

So, integral of I becomes minus integral of minus I but then the integral cannot change just 

because you have performed an inversion nothing has changed. 

 

So if I equal to minus I then of course I equal to 0, so what we see here is that after doing all this 

we get the result that this x cube term yields a 0 value for delta E which means there is absolutely 

no contribution to energy. There is no change in energy due to perturbation if we stop at the x 

cube term. But then that is not a happy situation because perturbation is there, anharmonic 

oscillator is definitely different from a harmonic oscillator and we have experimental evidence. 

 

So what we do is we look at the next term in the polynomial keep everything same add one more 

term x square here in the unperturbed Hamiltonian in the perturbation term we had incorporated 

the x cube term earlier. Now introduce x to the power 4 term you might ask why v by 24 let us 

not worry about it. Let us if you understand that this is a constant we are good. Now what we 

will do is we will take this and we will put it in once again in the expression for delta E. 

 

Now of course we are going to get two integrals one containing x cube and the other containing x 

to the power 4. So, this is the first term right same as what we had got earlier and without much 

hassle we can understand that this entire term is actually 0 right that is why we are even talking 

about x to the power 4. What about the second one? Second one has x to the power 4 here. Now 

see this x to the power $ is symmetric right replace x to the power x by minus x, x to the power 4 

is not going to change sign, so it is symmetric. 

 



So what do we have here, the first hermite polynomial this hermite polynomial and that hermite 

polynomial no matter whether they are symmetric or not that product is symmetric this Gaussian 

factor is symmetric. Now x to the power 4 is also symmetric what does that mean that means the 

integrand the entire integrand is actually symmetric. So, the integral is non-zero and the 

contribution made to energy is also nonzero. 

 

What one needs to do after this is just take this expression for hermite polynomial for v equal to 

0 1 2 3 put them in and see what you get? You will get actual expressions for energy correction 

to energy and that is actually written by very I hope you understand that whatever expression you 

get is going to depend upon the vibrational quantum number v. So, in the expression of energy it 

comes as a next term in polynomial.  

 

You might remember that the for the harmonic oscillator x this is the expression for energy. The 

correction term for energy turns out to be something in v plus half whole square. So, that is how 

we describe an anharmonic oscillator that is how we bring in anharmonicity as a perturbation. 

So, that then has allowed us to move over to a more realistic system. Before we close this 

discussion let me do something that is actually discussed in some other course. 

 

But may or may be I would not let us not do that let me end with this; end this module with this 

brief discussion. This is only the tip of the iceberg we have just begun we have talked about time 

independent perturbation theory and we have seen how one can bring in anharmonicity as a 

perturbation to the unperturbed your harmonic oscillator system. One can perform a little more 

discussion on this as well. 

 

And that is what we will do next day hopefully. It is just that we have to develop a concept of 

linear equations we have to understand what circular determinant is and then once we have done 

that we will perhaps discuss another very important system from the especially from the point of 

view spectroscopy, non rigid rotor. Will perform a brief discussion of that and then we are going 

to come back to where we had taken off a little bit. 

 



Remember multi electron atom, helium atom we are going to see how perturbation theory is 

applicable to helium atom and we will see how far we can get using that. Once we are done with 

that we will learn another technique. The technique uses variation theorem and that will be a 

little longer discussion than perturbation theory and we will see how we can sort of get close to 

the actual value using variation theorem. 

 

But before anything else in the next module I have to show you some experimental result and 

how we can approach it using this perturbation theory that we have discussed in the last few 

modules, thank you.  


