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Last time we met, we talked about iterative deconvolution, and how to fit data. So today we will

try to learn 2 things. First is what do we fit the data to and second, how do we know that the

fitting is good or not? I mean, if we look at the data, looking at it, we might be able to say that is

a good fit or not a good fit. But the question is, computer does not have eyes, how does the

computer know whether the fit is good or otherwise, but before we go there, let us discuss the

data fitting models. 

(Refer Slide Time: 00:51)

thereafter all, if you remember we have said that in the simplest case scenario, we have a single

exponential decay and we said that in more complicated scenario, the most popular way of fitting

data, not necessarily always the correct way of fitting data is by a multi-exponential function.

And I think we are more or less familiar with this kind of functions. 

(Refer Slide Time: 01:17)



The first one here, I of t = I of 0 multiplied by e to the power – t by tau, this is the simplest way

you can fit the data I of at t  is the fluorescence intensity at time t.  I  at 0 is a person is the

fluorescence intensity at time of excitation or 0 time and Tau is a lifetime. So, this is essentially

the integrated rate law for a first order process. It cannot get any simpler than this. But then we

said that it is not necessary that life will be so simple and we can have more complicated data. 

So, as of the first kind of complication we can think of, is in the form of a multi-exponential data,

let us say you have several independent decay pathways, then what do you get I of time t after

excitation is the same I of time 0. But now this is multiplied by not one exponential term, but

rather a linear combination or weighted average or weighted sum of several exponential terms, I

can have several values 2 3 4 5 6 10 100 200 in principle can have any number. 

And then you have as many exponential terms and as many amplitudes. square of amplitudes as

you know gives the contribution. Now, the thing is if you increase the number of exponential

terms, generally, you’d get a better decay a better fit, because there is something called over

parameterization. So, first question to ask is my decay single exponential or is it not? How do we

know whether a single exponential or not. 

The best way to do that is to make a similar plot where y axis now is in logarithmic scale, x axis

time is in linear scale and have a look at it. What will the shape of this curve B, if it is a single



exponential decay is a straight line. And if it is not a single exponential decay, then it will not be

a straight line. So, that is the first question to ask. So, if it is a straight line, then actually if you fit

it to 2 or 3 exponential terms, then it will still fit very well, but it would not make any sense. 

So, first thing that one needs to do is a visual inspection. And by visual inspection, the first thing

to ask is whether it is at all exponential, single exponential, or whether it is more complicated. Of

course, looking at the decay, you will never be able to tell whether it is bi exponential or tri

exponential or what you can only tell whether it is single exponential or not. Now, what are the

implications of these terms? Let us start with the discussion of the single exponential decay tau. 

We have discussed tau already. so what is the meaning of tau? Can you tell me? Tau is called the

lifetime that is right, why is it called the lifetime because it is average time spent by the molecule

in  its  excited  state.  And that  is  something  that  was  given  to  you  as  a  homework,  you are

supposed to work it out. I  is worked out in standard textbooks, like that of lakowicz, principles

of person spectroscopy by lakowicz. 

And then, this lifetime tau is also related to some other quantity that we have discussed very

early on in this course. And what is that quantity? So, let us put it this way. If lifetime is longer,

do we expect the fluorescence to be more intense or less intense? Then you expect it to be more

intense. Why? Because of this simple relationship that phi f , the fluorescence quantum yield = k

r multiplied by tau. what is k r here? it is a radiative rate constant. A word of caution here, very

often in literature, you will see people say it is radiative rate. 

But let us not forget that it is a radiative rate constant. So, please be careful and remember it is a

rate constant and not rate right. Now, this radiative rate constant is related to some fundamental

quantities that we might have studied in spectroscopy courses during our MSc or something. Can

you tell  me what  the  radiative  rate  constant  is  related  with?  Einstein  coefficient  which  one

actually if it is related to ‘a’ It will be related to ‘b’ also. Einstein ‘a’ coefficient is the coefficient

for spontaneous emission. 



But then that is also linearly related to be at what is ‘b’ related to? ‘b’ when you say b, einsteins

‘b’  coefficient  it  is  for  stimulated  transition  between  2  states  right.  Upward  transition  and

downward transition  so,  what  about  upward  transition  is  there  a  ‘b’  associated  with  it  that

actually equal right b12 equal to b2 1 in terms of experiment, what is the experimental quantity

that is associated with b12, where one is a lower level 2 is a higher level for absorption the

Einstein ‘b’ coefficient for absorption which experimental quantity should it be related to yes,

little louder please. So, what do we what is it called  of course, it is related to transition moment

integral, but there is a that is something that you get from quantum mechanics. What is it that I

can get using some instrument experimentally without knowing any quantum mechanics perhaps

that will be related to radiative rate constant. Molar extinction coefficient or molar absorption

coefficient? 

That would be related to the radiative rate constant. And there is a relationship between the 2,

which was a you can study, we are not going to the detail right now. Now, so the good thing

about knowing fluorescence quantum yield from steady state measurement and lifetime from a

time  resolved  measurement  is  that  you  can  work  out  the  radiative  rate  constant.  More

importantly, 1 – phi f = k NR multiplied by tau. 

So you can work out the non-radiative rate constant. So as you go further in our discussions, we

will see that will more and more want to know what is the rate constant associated with some

non-radiative process that takes place in the excited state of a molecule? And this is how we will

get the answer. Now, the problem is we get the answer very nicely if it is a single exponential

decay. The moment it is multi exponential situation become complicated. 

So, when it is multi exponential, what is the implication of ai? What is the implication of tau i let

us ask that question and the answer is ai multiplied by tau i gives you the contribution of the i th

component to fluorescence intensity. Now, this point needs to be understood very clearly,  in

order to go further ahead in the discussion of time reserved fluorescence spectroscopy. ai into tau

i. i is some component right. 



So, let us think like this, that we use this example once again a little later. Let us think that there

are 2 components tau 1 and tau 2, tau 1 is because of a fluorophore that is free and tau 2 is due to

the same fluorophore that is bound to say cyclodextrin or protein or something like that and tau 2

is longer than tau 1. what will be the intensity will the intensity be more will the intensity be

less? That depends not only on tau 1 and tau 2, but also on how much of it is bound and how

much of it is free. 

Let us only 20% of the fluorophore is bound to cyclodextrin and let us say for the free form of

the fluorophore lifetime is one nanosecond for the bound form lifetime is 10 nanosecond. what

will be the intensity is 20% is bound and what will be the intensity if 80% is bound. naturally

intensity will be much more but 80% is where does that come from that comes from here that

contribution of the ith component to fluorescence intensity is actually ai multiplied by tau i. tau i

you remember is an intrinsic quantity lifetime characteristic quantity. 

but a i is the contribution and this can have actually severe implication. suppose think of a Nano

particle  that  we  have  made  which  is  almost  completely  non  fluorescent.  The  only

photoluminescence it has is due to some trapped states right. So, let us say that the time for the

recombination  of  electron  and  hole  in  the  nano  particle  is  something  like  1  picosecond  1

picosecond is a small time so, fluorescence intensity should be low. 

but let us say there is some trap state and concentration of traps which is really very low, but

lifetime of the traps it is hundred nanosecond what will the photo luminescence of this Nano

particle be due to mainly the trap state which is very few in number or the intrinsic Band-Aids

recombination of electron and whole which is taking place all the time in photo luminescence,

you will actually see a much greater contribution of the trap state because this lifetime is hundred

nanosecond. 

But this is only an example, there are cases in which a small a i can be overcome by a large tau i

what we just discussed, there are cases in which a small tau i can be overcome by a large ai.

Think of an extreme case think of say warfarin is a very common fluorophore that is used in



fluorescence  and  study  of  protein.  Lifetime  of  free  warfarin  is  something  like  hundred

picosecond lifetime of bound warfarin is about 2 nanoseconds. 

Now, let us say a very little protein almost all the warfarin is free will intensity be high or low? It

will be low because then this tau i tau 1 a 100 picosecond that component will  have almost

hundred percent contribution a i will be large for it, but when it is bound to protein, even if say

10% of it is bound to protein then what will happen? Contribution of fluorescence intensity will

be much more because lifetime has now increased 100 picosecond to 2000 picosecond,  two

nanosecond, 20 fold increase. 

So, what the composite intensity will be is governed by a i be the relative values of amplitude as

well as lifetime. So, a i tau i remember is the contribution of the I th component to fluorescence

intensity. So, what is steady state that what is a steady state intensity see a very talked about a

single exponential  decay we could easily correlate  the quantum yield which is  a measure of

steady state intensity with lifetime. can we do some such correlation in case of multi exponential

decay. 

Let us see, in case of multi exponential decay will you agree with or for any decay Actually, I

hope you agree with me when I say that the steady state intensity is integral of intensity at some

time t.  From time 0 to infinity of after  excitation.  Of course,  when I say 0 to infinity,  right

infinity only to make it a general statement, it is not really infinity. For all practical purposes,

what is infinity? Infinity is a point where the decay has become almost 0. 

If  it  is  an  exponential  of  multi  exponential  decay,  it  becomes  0  asymptotically.  But  for  all

practical purposes, suppose I at times 0 is 5000 counts. And then you go to 10 nanosecond. And

there you see that the intensity has become 5 counts. So 5 is much, much less than 5000. So you

say to yourself, so what we are saying is, intensity of steady state is really integral of i of t dt. For

limits 0 to infinity of time or rather we can say that it is the area under the decay. 

Of course,  we are talking about a particular  wavelength is this  understood? that steady state

intensity at any particular emission wavelength is the area under the decay or it is the integral



from 0 to infinity of i of t. Then let us substitute the expression. Since I at 0 is a constant it comes

out and I can take the summation outside the integral. So, I get i at times 0 sum over I, a i

integral e to the power - t by tau i dt.

And an advantage of setting the limits from 0 to infinity is that this becomes a standard integral

solution of which is known. And when you put the solution, we get something like this. I steady

state is I at times 0. I missed that. 0 in brackets here about that this has become small i at time 0

sum over i a i tau i or you can write i at times 0 = i steady state divided by some over i a i tau i.

So, here there is a correlation between steady state intensity and the lifetimes. 

The take home message is that it is not enough to look at only lifetimes, you have to look at their

amplitude as well contributions as well. But, actually, it is better to stop here and not get over

enthusiastic and take it a little further like say 80% of people do in fluorescence spectroscopy.

So,  what  you see  is  that  almost  all  the  decays  are  fitted  to  multi  exponential  function  and

everywhere people happily work with what they call. 

(Refer Slide Time: 15:56)

Average lifetime this thing that you see average lifetime is some over i a i tau i divided by some

over i a i dimensionally is this fine right because this will have the magnitude of time. But this

amplitude  weighted  average  lifetime  to  be  honest,  has  no  meaning  other  than  steady  state

intensity. 



So basically gives you a measure of steady state intensity. And if we are going to talk about

steady state intensity only, then what is the point of doing a time resolved measurement in the

first place. So, as far as possible, it is better to avoid using average lifetimes and also this is not

really average lifetime. 

What is really average lifetime is this intensity weighted average lifetime sum over i a i square

tau i square divided by sum over i a i tau i. So, you see here the denominator is actually the total

intensity so this average lifetime may have some meaning. So it is related to the area under the

curve. But then from here trying to work out radiative rate constant nonradiative rate constant is

not  a very sensible  thing to do.  Because after  all  you are saying that  different  lifetimes are

associated  with  different  processes.  Which  would  have  different  non  radiative  constants  or

radiative constants or whatever. 

So, if you take an average lifetime, all that individual, information and amplification everything

is lost. So, if we have to work multi exponential decay, if we have to use average lifetime for

some reason, then let us not try to take it too far and work out the rate constants in the first place.

They are not completely useless. This amplitude related lifetimes actually are used when you talk

about say, foster resonance energy transfer. That is where this amplitude weighted lifetime have

some application. But generally, it is not really correct to talk to call this the average lifetime.

This is average time lifetime if at all.

(Refer Slide Time: 18:12)



And  it  is  not  very  useful.  That  being  said,  Let  us  move  over  to  something  that  is  more

complicated and therefore, closer to reality many times. So, next model we want to discuss is

distribution of lifetimes. And this distribution of lifetimes is a much better model, then some of

exponent but the problem is this, when you do some of exponential, then what you imply is that

you have that many lifetimes, discreetly, but sometimes that may not be the case. Suppose you

have a range of micro environments you do not have a 01 situation. 

You have some kind of  a  micro  heterogeneous  medium,  very you have gradient  polarity  or

gradient viscosity say there is a polymer right and maybe at the core the polymer is very dense

and on the outside it is not dense at all. And let us say your fluorophore is distributed from core

to the end many places. Now, a multi-exponential model is not valid, if it is simply bound versus

free, then it is valid, but even when you go back to this bound versus free model that we used,

think of some fluorophore that is bound to a protein. 

It is not always the case that it is bound specifically to one site and experiences one kind of

environment,  more often than not, you can have nonspecific binding, and if it  is nonspecific

binding, then even bound fluorophore actually experienced different kinds of environments. Or

in other words, they experience a distribution of environment and this environment, it might be

convenient if we talk in terms of polarity, we are all familiar with the dielectric constant even

though dielectric constant is not a good parameter of polarity in micro heterogeneous media. 

But still for the sake of simplicity, let us see dielectric constant, let us say our fluorophore is

bound to a protein not specifically, and it experiences a range of dielectric constants. The modal

dielectric constant, let us say, is 20 and there is a distribution so 20 + - 5, that is a distribution

and a distribution is going to have some kind of a shape, it can be a gaussian distribution, it can

be a Lorentzian distribution, it can be 2 sided exponential, it can be whatever. 

But some distribution function may be there for such a case, a better fitting function then the

mundane multi exponential model is distribution of lifetimes. And here you need to look at the

function a little carefully, because it might actually look like multi exponential function to the



untrained eye. i as time t = integral 0 to infinity alpha tau = e to the power - 1 by tau t by tau t

tau. Please note it is not dt. 

Of course,  an integration  is  a summation,  but  here alpha tau means distribution  function  of

lifetime and we are integrating over lifetime I am not treating the distribution function explicitly

because you might have to use different distribution function depending on what kind of system

it is. But this is more often than not much better fitting model, than multi exponential. See multi

exponential function might fit your decay. 

I am not saying it would not fit. Because I might have said in this course, I have actually seen an

elephant shape of an elephant drawn by a clever combination of 30 exponential functions using a

sufficient number of exponential functions, but as you can draw a self-portrait or Also, if you

play with the amplitude correctly, and if you play with the shifts correctly, but that would not

mean anything is an elephant made up of 30 exponential functions. 

And it does not even make sense. It is funny, right? It is laughable. Similarly, just because your

decay might fit to all the exponential function does not mean that it is the correct model to use.

And if we are going to do a quantitative study, if we are going to extract as much juice as you

can from your lifetime data, then it is important to go beyond the convenient multi exponential

model  and  think  what  your  system is  like  and  think  what  kind  of  fitting  model  would  be

appropriate for your system. 

Unfortunately,  this  distribution  of  lifetime and all  they  actually  come with commercial  data

fitting packages now. In our lab, we have 2 programs. One is from picoquanttropical one, the

other is from IBH, which is now horiba jobin yvon. Both the programs, I believe,  have this

option of fitting to a distribution of lifetime. it is more difficult. It takes more time. It requires

more playing around, but it is doable. Of course, if you use a better algorithm, then it is easier to

do it. 

But maybe we will postpone the discussion until we talk about it actual data fitting and goodness

of it. Let us move on this distribution of lifetime is often a better model to use, depending on



what kind of system you are looking at.  But as we discussed, it  is also a more complicated

model. Multiple exponential is easier. In fact, even fitting is easier. So often, what we do is and

these programs usually have provision of letting you do it. 

Often what you do is you try to get  away with the trouble of using explicitly  a distribution

function like gaussian lorenzian etc. By instead using a large number of exponential function was

at this point, it might be a little confusing, because 10 minutes ago, I was saying not very kind

things about multiple exponential functions. And here I am saying that you can fit the data to a

large number of exponential functions, but bear with me for a while, it will start making sense. 

So, what you do is you fit to a large number of exponential functions, but what you do is that you

tell the system what the lifetimes are.so if you fit two, not two exponential or three exponential

function. Fit to 100 exponentials. If your computer and if your program are good enough free to

1000 exponentials and use a wide range something like this, you 6 lifetimes. So, the way you fit

now is that you say that the lifetimes which I have are 0.1 nanosecond, one nanosecond 10

nanosecond 100 nanoseconds so on and so forth. 

Usually they are arranged logarithmically not thereafter one, but logarithamically so that you can

look at small lifetimes as well as large lifetimes. And you fit your data to this function, where all

these tau i  values are forcibly preset. So, what is the only play you have? What is the only

parameter that is going to change the amplitudes right a i. So what you will get is you will get if

you are using hundred lifetimes, you will get 100 amplitude. 

Now, what you do is you brought the amplitude against lifetime and then you get thoughts like

this is actual data taken from this 2000 cell molecular biology paper. So, here you see at the

looked at different emission wavelengths, 300 nanometer 320 nanometers 380 nanometers, note

the y axis amplitude, note the x axis lifetime. And here of course, they are not there are 100

nanosecond rather they have gone from less than .1 nanosecond. 

Do not  ask me how they did it  using time correlated  single  photon counting  up to  say,  10

nanosecond. And if you look carefully at the x axis and you see that it is logarithamic because



you want to look at .1 picosecond .1 nanosecond kind of lifetime as well as 5 6 nanosecond kind

of life. If it is not logarithmic, you are going to miss this. So, you see, let us not worry about

what you what FKBP59 - 1 some kind of a protein. 

But what you see is at 380 nanometer,  you have 2 kinds of lifetimes something that is very

small .1 nanosecond or So, something that is quite large, say, what is this 2 3 4 5 6 nanosecond

and there is a distribution about 6 nanosecond, there is a distribution of .1 nanosecond as well.

That means that, first of all, there are 2 broad kinds of environments. Moreover, within each of

the kind of environment, there are sub domain. 

That is where you get this distribution. And one reason why if you can if you have the capability

of fitting you are data to 100 exponentials. One way, this approach is better than using an explicit

distribution  is  that  how do you know what  the distribution  is?  How do you know that  it  is

gaussian? Look at what we see here is this gaussian is actually lognormal kind of distribution.

But there is no way in which I can know beforehand. 

Whether it is going to be gaussian lorenzian lognormal what? Right? So good thing about fitting

your data too many exponential  model, where lifetime is fixed amplitude is varied. And you

make  a  product  amplitude  versus  lifetime,  is  that  you  do  not  care  about  what  the  kind  of

distribution is, but it comes out automatically in your result. Right here you see that the short

lifetime but of course, this may not be lognormal. Also, do not forget, the x axis is not linear. 

It is actually logarithmic. So I do not know what it is, but the point is, I am not working with any

particular kind of distribution, whatever is the distribution is expected to show up in the process.

Now, when you go from 380 nanometer to 320 nanometers. Now, what do you see? Now, this .1

nanosecond kind of component is completely gone. Rather, you have a broad effect if you work

out the area under this one, and this one, I do not know which one will be more, I do not know

even more, because the scale is logarithmic. 

But here you have quite a good distribution around .3 nanosecond. So, the .1 is that nanosecond

component is gone, you get a 0.3 nanosecond component and you have this distribution there.



We have something new between one and 2 nanoseconds and that also has a broad distribution

and whatever you heard earlier is there. But now what it appears is that this thick edge you had

has given way to a completely new distribution that is there. 

I do not know what the system is and at the moment I do not care, just try to show you some data

and try to discuss what this data would mean. Now, when you go to 300 nanometer, what do you

see?  You  see  that  this  .3  nanosecond  component  that  had  come,  that  is  now  the  major

component. It has some distribution, but it is not so much. But of course, you can see that here

fully testament maximum is several nanosecond here fully width half maximum is hundreds of

picosecond again of course, you have to work a percentage. 

So, now, this 200 300 picosecond component is a major one, this long component has become

very small, and this one has also gone down compared to what it is. So here, I hope we have

been  able  to  convey  that  by  doing  this  kind  of  data  fitting,  we  actually  get  a  wealth  of

information  that  we  do  not  get  if  we  mindlessly  fit  our  data  to  double  exponential  triple

exponential model and resort to your average lifetime that means nothing this actually tells you

what your system is like. 

So, what we have learned so far is that more often than not you might have to work with a

system where  you have a  distribution  of  lifetimes.  The one way of  handling  distribution  of

lifetimes is to use a specific distribution. Danger of that is that may not be the case. Other way of

doing it is go back to good old multi exponential function, but this time, plot, amplitude versus

lifetime and do not stop at 2 and 3. 

Since you are doing multi exponential go all the away and fit 200 exponential, but for that you

have  to  a  good  computer.  You  have  pressed  out  algorithm.  We  will  talk  a  little  bit  about

algorithm towards the end. But here we take a break and we come back in the next module and

continue with more data fitting models. And then we also learn about goodness of it.


