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We are now going to discuss a new concept in 2 dimensional NMR. So far we have discussed

different types of 2D experiments, 2D separation of interactions, namely the chemical shifts and

the coupling constants, along the 2 dimensions of the 2D NMR spectra. We discuss correlation

experiments, where spins which are coupled in one way or the other, they can be understood by

looking at the correlations in the 2 dimensional spectra.  

(Refer Slide Time: 00:58)

The cross peaks in the 2D correlation spectra reflect the correlations or the interactions between

the spins. And we also looked at how to improve the line shapes and the resolution in the spectra

by choosing appropriate coherence transfer pathways. So these are new concepts. So we are

going to introduce now another important concept namely scaling in 2 dimensional NMR. What

do we scale? We scale the two parameters which appear in the spectra namely the coupling

constants or the chemical shifts.  



We can do that at will. It is not that the chemical shifts of the coupling are actually changed for

the  sample,  it  is  just  that  they  will  appear  as  modified  in  your  spectrum.  It  will  have  its

advantages with regard to the suppression of the peaks with regard to the resolution in the peaks,

with regard to the intensities of the peaks and so on and so forth. And therefore that is a concept

which are going to discuss now.  

So,  as we see here,  the objective  is  to  scale  selectively  either  the coupling constants  or  the

chemical shifts, this can be done in the indirect dimension of the 2D experiment where there is

explicitly no detection of the signal. During the T2 period when the signal is actually detected the

receiver is on, your will be limited with regard to the manipulations you can perform. Therefore,

it is rather hard to do such manipulations of the coupling constants or the chemical shifts during

the detection period.  

Because obviously, if you want them to appear differently in your spectrum, you will have to do

some manipulations in the evolution and that is a little harder. Whereas in the T1 period which is

the before the detection period where there is no actual detection of the signal, we can play

around with the pulse sequence and get some information of the type you want. We did the same

thing in constant time COSY where we are decoupled along the F1 axis.  

Here, we are now going to discuss how we can make the J coupling constants changed. In this

particular case, we will see that the J’s will appear up-scaled, okay and the pulse sequence is as

follows. You have the 90˚ pulse and this will be followed by the T1 evolution period and that will

be followed by an extension of the evolution period which consists of τ –180 –τ and then you

have the detection pulse the 90˚x pulse as in the COSY.  

So this part of the pulse sequence which is τ –180 –τ, this is like a spin echo sequence, right. So

and therefore, this is a kind of an extension of the evolution period. Notice also here that τ ∝ t1,

τ=α t1,  α  is  a  positive  number  and is  obviously  greater  than  0 and therefore,  you have  an

extended evolution period here. And as we perform the experiment as t1 is getting incremented,

this period is also getting incremented. Therefore, the separation between these 2 pulses will go

on increasing as we increase the given period.  



Of course that is same as in COSY as well, as we increase the  t1 period this separation go on

increasing and also this 180˚ pulse keeps moving further and further as we increase the t1 value

because it is equal to α t1 and alpha is a constant, okay. 

(Refer Slide Time: 04:55)

Let us see how it works, let us try and understand this. We will do a product operator calculation

for 2 spins system as usual, considered 2 spins k and l.

(Refer Slide Time: 05:05)

And  these  are  the  density  operator  time  points  where  we  will  actually  look  at  the  density

operator.  



(Refer Slide Time: 05:11)

At time point 1 so it is basically z magnetization of the 2 spins, the Ikz + Ilz and when you apply

the 90˚ pulse on  X axis, you get –(Iky + Ily), these are independent spins. So they will evolve

independently during the next evolution time period. For our purpose, we will only illustrate

evolution of the k spin and the same thing will apply for the l spin as well. During the next period

t1+2 τ , what happens? What kind of evolutions happened?  

Notice the chemical shift evolution will occur for the period t1 only. Because they are refocused

by the spin echo sequence during the period 2 τ , as you remember the spin echo refocus is the

chemical  shifts,  but it  does not affect the coupling constants,  it  does not affect the coupling

evolution.  Therefore,  coupling  evolution  will  continue  to  happen  during  the  2 τ  period.

Therefore, the total coupling evolution period will be t1+2 τ .  The chemical shift evolution will

be restricted to t1 whereas the coupling evolution will be for the period t1+2 τ , okay. 



(Refer Slide Time: 06:31)

So let us write these evolutions here, consider 

Iky→I ky cosωk t1−I kxsinωk t1

Now let us use this abbreviations here cosωk t1is written as a Ck (t1), sinωk t1 is written as Sk(t1) if

you write that, then ofcourse you will write this expression once more here and evolve further

under the influence of the coupling constant.  

Iky cosωk t1→C k (t1 ) {I kycosπ J kl ( t1+2τ )−2 I kx I lz sinπ J kl (t1+2 τ )}=C k (t1) {I kycosπ J kl ( t1+2α ) t1−2 Ikx I lz sinπ J kl ( t1+2α ) t1

Similarly, for the second term here 

Ikx sinωk t1→S k (t1) {Ikx cosπ J kl (t1+2α ) t1+2 Iky I lz sinπ J kl ( t1+2α ) t1}

Therefore were total density operator ρ3, okay. At the end of the period 2 τ is the sum of these 2

evolutions and that is 

¿Ck ( t1) { Iky cosπ J kl (t1+2α ) t1−2 I kx I lz sinπ J kl (t1+2α ) t1 }−Sk ( t1) {I kx cosπ J kl (t1+2α ) t1+2 I ky I lz sinπ J kl ( t1+2α ) t1}

 (Refer Slide Time: 09:00)



So,  now therefore,  you see the  coupling term is  multiplied  by the factor  (1+2α),  okay.  So

therefore,  when you Fourier  transform this  total  thing along the  F1 dimension,  the  coupling

concept will  therefore appear as  (1+2α)J ,.  This is the coupling constant appears scale by a

factor  (1+2α), along the  F1 axis in the 2D spectrum. We will not go through the rest of the

calculation along the t2 evolution and things like that, that remains the same as in the COSY and

we do not want to repeat that here.  

The idea here was to show that during the t1 period, the coupling constant appears scale by the

factor (1+2α), and this is because of that introduction of the spin echo sequence τ –180 –τ. Now,

in  this  calculation  what  we  have  done,  we  actually  have  not  considered  the  relaxation  that

happens during the evolution period. We did not consider that in the previous cases as well, but

here it is more important to consider that because there is a spin echo sequence in the evolution

period. So what happens during this period? 
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So if you look at this sequence here, during this spin echo, if you recall the previous discussions,

the field inhomogeneity effects will also be refocused. The chemical shift refocusing means the

field  inhomogeneity  will  be  refocus  as  well.  Therefore,  during  this  period  the  transverse

relaxation happens with the time constant which is t2
¿which includes t2 plus the contribution from

the field inhomogeneity, whereas here during this period, the relaxation will be dictated by  t2

alone, there will be no field inhomogeneity contributions.  

Therefore, the signal will decay in the following manner, up till here, it will decay with the time

constant oft2
¿ star and from here to here it will decay with the time constant of t2. Therefore, we

have to calculate that explicitly and that is what we will show here. 



(Refer Slide Time: 11:12)

So this t2 relaxation would cause the scaling of the line-width as well. So, that is what we would

like to show what is the effect of T2 relaxation during this whole period. Now, if I want to write

the  density  operator  as  ρ3
¿for  this  and I  have  this  density  operator  ρ3 which  is  without  the

relaxation considered and then I will have to multiply this by the relaxation factors. So, if during

the t1 period the time constant of relaxation is t2
¿therefore I have this 

ρ3
¿
=ρ3 (e

t 1
T 2

¿

×e
−2τ
T 2 )=ρ3(e

t1
T 2

¿

×e
−2 α t1
T2 )

Because this total is the relaxation factor, this is the relaxation factor, this is the first relaxation

during the time  t1 and this is the relaxation with the time constantly  t2. So, when you put this

together then of course you will get 

¿ ρ3(e
−(1+

2αT 2
¿

T 2 )
t 1
T 2

¿ )

This is the same as this and this one ofcourse is coming from this term here. So therefore if I

were to call this as a factor.
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So,  

ρ3
¿
=ρ3 (e

−β
t 1
T 2

¿)

Then where β=1+
2α T2

¿

T 2

So therefore, the relaxation causes a modulation of the line-width as well, what is the line-width?

The line-width is  
t1
T2

¿ if we had simply e to the  
−t1
T2

¿ , then  
t1
T2

¿ corresponds to the line-width  
t1
T2

¿

represents the normal line-width. Now, that is now multiplied by a factor beta, therefore the line-

width will appear modified and along the F1 dimension therefore, the line-width will be scaled

by a factor beta, okay, that is this one here.  

Now, in the event  T2
¿
=T2, the line-width scaling factor will be identical to the J scaling factor

(1+2α )that is if  T2
¿
=T2this will cancel and then you have  (1+2α ) here. So, the  J-scaling then

does not necessarily increase the resolution in the fine structure of the peaks,  the individual

components in the cross peak of the diagonal peaks will have a line-width, right and we are

trying to increase the separation between those components by scaling the J values and therefore

they appear more resolved.  



However,  if  the  line-width  also  increased  by  the  same  factor,  then  you  do  not  achieve  a

significant  improvement  in  the  resolution.  The  J-scaling  does  not  necessarily  increase  the

resolution the fine however, in most of the cases, this condition is not satisfied and T2
¿≠T2. So

therefore the relaxation time constants in the two cases are different. Therefore, this will be less

than a T2, T2
¿
<T 2.  

Therefore, this factor is the less than 1 therefore, you will have the line-width will be scale by a

smaller factor than the J's and then you will get the benefit of up-scaling of the J values and then

it  will  improve  the  resolution  in  the  spectrum.  The  benefit  of  the  J scaling  along  the  F1

dimension  is  to  increase  the  separation  between positive  and negative  signals  in  the  COSY

spectrum and does lead to reduction in the cancellation of the intensities.  

Remember in the COSY, the cross peaks will have plus-minus character in the cross peaks and

they would tend to cancel their intensities in the event of insufficient resolution. Therefore, if

you are able to increase the separation then cancellation will be reduced and that increase the

sensitivity of the cross peaks.  

(Refer Slide Time: 15:18)

And here is an experimental example, this is a small molecule Uracil. It has 2 protons here and

these 2 protons are J-coupled and the coupling constant between them is about 7.3 hertz, okay

and this coupling constant appears in the F2 dimension because we have done nothing in the F2

dimension during the  T2 period the evolution happens as with the normal  COSY and it  will



appear in the fine structure as well. So, there is 1 cross peak here and the diagonal peak here and

this cross peak for example or this cross peak or this cross peak is actually blown up here in this

1.  

We can see along the ω2 dimension or the same as F2 dimension this coupling constant remains

the same this is 7.3 hertz and the same one now appears scaled along the F1 dimension near the

scaling factor is 4, 1+2α=4. Therefore, this appears multiplied by a factor 4, okay. So, this is a

clear indication of the enhancement of the resolution and you can see the positive and negative

components here very clearly, although there is the same color is used here but these positive

negative components all the 4 components can be seen very clearly in this spectrum.  

So, therefore this helps you to improve the resolution in the spectra and enable measurement of

the coupling constants wherever they are not sufficiently well resolved in your spectra, okay.  

(Refer Slide Time: 16:46)

Now we see the next scaling experiment and it is a simple modification of the previous one. So

this is called shift scale COSY. In the earlier case, we scaled the coupling constant number. Now

we will scale the chemical shifts, what do we do? Is simple modification here, now the t1 period

is all the way from here to here. Earlier t1 period was from here to here and this was additional,

and we put this is alpha t1. So the whole period was 1+2α t1, okay.  



So now what we are doing is the, we are keeping this whole period from here to here as t1 and in

between we introduced this, okay. So for τ−180−τ this remains the same and 2 τ=α t1 here, just

a  small  change  in  the  representation.  So  this  whole  period  is  called  α t1.  So  therefore,  the

chemical shifts will now evolve only for this period from here to here right and that is t1−α t1.  

That  is  1−α t1 and  the  coupling  constants  will  evolve  for  the  whole  period  t1 whereas  the

chemical shifts will evolve for the period t1−α t1, okay. So the pulse sequence the same, we are

just played around with the, the timing, how you adjust the timings of the various pulses, okay.

Now this produces a different scaling effects absorbed by delay manipulations.

(Refer Slide Time: 18:14)

So what is the consequence here? We just do the same calculation once more. So during the time

period t1 the following evolutions  will  happen.  The again we show only for the  k spin,  the

chemical shift evolution we occur for the period 1−α t1only. As they are refocused by the spin

echo sequence during the period 2 τ. While J coupling evolution will happen for the entire period

t1, okay.  



(Refer Slide Time: 18:38)

So we do this calculation

Now you all these under the coupling

Therefore 
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Okay,  so  therefore,  the  chemical  shift  appears  a  downscale  by  factor  1−α  along  the  F1

dimension.  Now this enables  improve the resolution in the multiplet  structured along the  F1

dimension by increasing the t1
max for the given number of t1 increments. How does that happen?

Because now since you have scaled down the chemical shifts suppose you have the chemical

shift range of 5000 hertz then you scale it by a factor of half then you will have if alpha is equal

to half okay then it will be 1 minus half, so therefore it is 0.5.  

So if you have that one then your chemical spectral range will be 2500 hertz, in which case your

increment from experiment to experiment in the t1 will be twice that in the normal COSY where

you had 5000 hertz. Therefore, for the same number of increments you are t1
max  will go up and

therefore, you are inherent resolution in the spectrum will increase because you remember, it will

depend upon what is the acquisition time, resolution will depend upon the acquisition time.  

So this will  be the acquisition time and this will get increased because you have change the

chemical  shift,  okay, spectral  range.  So therefore,  again you will  get an improvement  in the

resolution, but however, the separation between the peaks overall that will get reduced. So as, so

long as you can afford that you can do this and so long as you can do it in such a way that the

 



peaks do not overlap on each other you can do this and you can achieve enhanced resolution in

the fine structure of the cross peaks or the diagonal peaks.  

Now once again here, we have not included the relaxation effects, we can include the relaxation

effects here true relaxation during the period is not explicitly included. Now if we include this it

will  cause  a  scaling  of  the  line-widths  as  in  the  case  of  J scaling.  Now if  we include  the

relaxation effects we will get the rho 3 star explicit calculation will go in the same manner as was

done for the J scaling effect. So you get a rho 3 into e¿ ¿, 1−α , this is from the chemical shift and

this is from the coupling of 
α T 2

¿

T 2
, okay.  

So therefore, clearly if the line-widths are scaled by the factor, see this whole thing if I take away

T2, 
T1
T2

¿  this whole factor is the so called beta here and that is 1−α+
α T 2

¿

T 2
. In the event T2

¿
=T2, the

line-widths will not get scale because this will become alpha and this  1−α+α will cancel and

this will remain as 
T1
T2

¿  in that case it will not appear scaled, okay. But if T2
¿
<T 2 as it happens in

most practical cases the line-widths will be scaled down and this will result in better resolution in

the multiplet fine structure, okay. And this condition will always be satisfied.  

The T2
¿
<T 2, you get improvement when you have this condition satisfied, the fine structure will

appear much better when you have downscale the chemical shifts.

(Refer Slide Time: 23:26)



Okay, so here is an experimental example, practical example although you cannot see the fine

structures here but this was used to improve the resolution in the fine structure of the peak. This

is  a spectrum taken from  Wuthrick's book NMR of proteins  and nucleic  acids and this  is  a

spectrum of a DNA molecule.  

You have so many cross peaks here, what is shown here is under the cross peak region of a DNA

segment, along this axis you have particular portion of the protons and this axis you have certain

segments, these are basically 2 double prime protons in the DNA and this is the 1 prime protons

in the DNA in the sugar ring. And these are the 3’ protons in the sugar ring.  

And you can see in every case, the fine structure here is improved along the omega 1 axis and

one can actually use this to measure these individual coupling constants and then when you do

that you can obtain information about the geometry of the sugar ring in the DNA segments. And

that is the application why this was done, okay. So with this application,  you could actually

determine the coupling constants  in the sugar ring and that  will  allow you to determine  the

geometry of the sugar ring in the DNA segment, okay.  

So therefore, in summary, I have shown you here today a new concept that is how to manipulate

the parameters in your spectrum, the parameters are the coupling constants and the chemical

shifts, we have considered the up-scaling of the coupling constants, which will allow you to

improve the sensitivity in the spectra and improve the separation between the multiplets in the



fine structure and thereby you can measure the coupling constants from their separations in the

cross peaks. 

And I have shown you the downscaling of the chemical shifts, you can afford to do this if the

peaks are not too close by in the 2D spectrum, so long as they do not overlap with each other by

downscaling you can do it and that will improve the acquisition time along the  F1 dimension.

The t1 dimension and that will improve the resolution along the F1 dimension or the ω1dimension

and as is indicated here. In the early days one used to use call as ω1 and ω2, but often people use

your F1 and F2 as well.  

So this is the application and we will see later how to increase the chemical shifts appearance of

in the spectrum, the can we make the chemical shifts and hands of the scale down. So we will see

that later and so with that we will stop here. 

  


