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So, in the last class we discussed in detail an experiment called as double quantum filtered

COSY.
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And that was a simply a pulse sequence which was like this and we had three 90 degree

pulses. This is 90φ the phase of φ and this is 90x and the data was collected here. And, this is

the t1 period and this is the t2 period. And, this is called as the double quantum filtered COSY.

And, this is very similar to the COSY which we also discussed in the previous classes and

that was just this, you have here t1 period here and t2 period here, just one pulse less.

And this is 90x, but we could have other things as well. In doing so we actually demonstrated

how double quantum filtered COSY produces some features which are very advantageous

compared to the COSY, especially  in the diagonal  of the two dimensional  spectrum, the

double quantum filtered COSY had anti-phase character. So, you have ¿ ¿ ¿,¿. And, this was

in comparison with the COSY where it was all  ¿ here,¿,  ¿,  ¿ and these are dispersive line

shapes here and these are absorptive line shapes.

Here we have all absorptive line shapes for both the diagonal as well as the cross peaks. And,

therefore it had a big improvement in the resolution in the spectrum. So, that was particularly



advantageous from the point of improving the quality of the spectrum. But, notice also we

demonstrated a new concept in that process and that is called as a selection of coherence

transfer pathways.

In  other  words  different  components  of  the  coherences  were  selected  in  two  cases.  For

example,  if I were to take a point like this here at this point or at this point, the density

operated we have created had this sort of terms  Ikz then Ikx,  Ily and  Iky and  Ikz Ily. So, in the

COSY experiment these were ignored, these first two terms were ignored. This is Ikx and Ikz

and  Ily,  these terms were retained in  the COSY experiment.  And, in the double quantum

filtered COSY experiment we retain this portion of the density operator by suitably adjusting

the phases of these pulses 90φ, 90φ.

In fact this brings in a new concept, a totally a new thought with regard to manipulation of

the magnetization transfers and the manipulation of the nature of the spectra.  So,  that  is

something which is quite important. And it becomes applicable in many other experimental

sequences as well. So, I am going to demonstrate you one more such application where we

choose a particular kind of magnetization namely  Ikz, we will choose Ikz here. So, let us see

how that can be done and that is what I am going to show you in today’s class.
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So, this an experiment called as two dimensional nuclear overhauser effect spectroscopy or

2D NOESY.  This  actually  has  been  discussed  previously  by  Professor  Ashutosh  Kumar

during his lectures on polarization transfer. So, this is not coherence transfer in some sense

that it is a polarization transfer. But, nevertheless it relies on choice of particular components



with the magnetization through the pulse sequence. This experiment has the following pulse

sequence, you have this 90φ-90φ, you can actually have 90x, 90x here, it does not matter.

But, let us keep 90φ, 90φ to illustrate the point of selection of coherence transfer pathways.

So, here we have 90φ, 90φ and 90x here and the phase cycling that is used for this experiment

is given in this manner. You have changed the phase of the oxidization of pulses x, y ,-x, -y

and ¿here.
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Notice in the double quantum filtered COSY we have the phase cycles which initial single

quantum k spin magnetization is converted into double quantum coherence between the spins.

k and l then transferred to single quantum spin magnetization and vice versa in the  kl  spin

systems. And, here the phase cycle was, this was ¿ for double quantum filtered COSY. But,



now we are going to use this remaining the same. We will make this ¿, how does that help

us? So, this we can see through this product operator calculation once more.
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I am putting the same four equations which were given earlier in the case of double quantum

filtered COSY. The first experiment with phi is equal to x often we also refer to this x phase

as 0 phase and y phase as 90 degree phase -x as 180 degrees and -y also as 270 degrees. So,

sometimes you will find references as 0 degree phase 90 degree phase 180 phase and 270

degree phase. And, conventionally this are used in the coding on the spectrometers, you put it

as 0, 90, 180 and 270.

So, when you have zero degree phase for the phi or the x phase then the density operator ρ4is

the same as there was in the COSY. You have here 

When φ was changed to 90 degree phase then of course you had these changes here, this

remained the same. 

 

 



This  changed to plus 2  Iky Ilx and this  changed to  Iky coefficient  being the same and this

changed to plus 2 Ikz Ilx sin π Jkl t1. Notice here there is a change lx here and ly there. If you

change the φ to -x, there is 180 degrees phase shift.

Then we got this remain the same

So, this is changed that happened because of the change in the phase of the excitation here.

Finally, when you had the phases 270 degrees or the -y then this first term remained the same,

this changed the sign become plus 2 Iky Ilx.

And, then you had -Iky you compare with this, this is the -Iky and you compare with this, this

is the -2 Ikz Ilx sin π Jkl ωk t1. I put all of them in the same page here for ease of understanding,

how if you manipulate these additions and subtractions different terms will cancel out.
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For example, all of them I now add, instead of subtracting anywhere in the double quantum

filtered COSY what I did? This was plus this was minus, this was plus and this was minus,

now what I do, I add all of them ¿.
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So, now we can go back and see which are the terms which will survive. This term has

remained in the same throughout, so this will remain. Now you look at this term, minus 2 Ikx

Ily and where does that appear again? It appears again here as minus 2 Ikx Ily. But, appears with

the same sign and therefore this does not go away. And, similarly this 2 Iky Ilx appears here

and it also appears here with the same sign, therefore if we add all of this, this also will

remain.

This will remain as these two terms into Iky Ilx and this is -2 Ikx Ily this will remain as with the

same coefficients. Now, what happens here? Now this  Iky cancels with this  -Iky and this Ikx

cancels with this minus Ikx. And, what happens to this? This 2 Ikz Ily cancels with this and this

2 Ikz Ilx cancels with this. Therefore I will have only limited number terms from the addition

of all of this.
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And that is indicated here, I will have 

And, the whole thing is multiplied by cosine omega k t1. Now, look at what these terms are,

this is clearly z magnetization only, this is the z magnetization of the k spin. Now, if you go

back and look at the natures of the product operators, this term here 2 Iky Ilx - 2 Ikx Ily is pure

zero quantum coherence. So, which means by this operation of the phase cycling we have

retained the z magnetization and zero quantum coherences.

Now, both these are not observable. So now what happens? To make them observable we

need another pulse. And that of course is another 90 degree pulse which is required. So, that

is  there  in  the  pulse  sequence.  The  last  90  degree  pulse  converts  them into  observable

magnetization for us to measure what happens before that.
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Now but during the next period in the pulse sequence during this period τ, we now have a

period called τm which is the mixing time. We looked at the density operator at this point in

time and we found that operation of this type we had only the z magnetization here and the

zero quantum coherence. And this τm is of the order of few hundred milliseconds. Now, what

happens during this period?

(Refer Slide Time: 11:14)

The following things happens: The z magnetization recovers towards the equilibrium value of

the  k spin. Because,  it  is the  k spin magnetization it  has to come back to its equilibrium

magnetization along the Z axis. And, this will be dictated by t1 relaxation time of the k spin.

Now, the zero quantum coherence is a coherence, therefore it is a phase coherence. This will



actually decay due to  t2 relaxation time. During the few hundred milliseconds it will decay

due to t2 relaxation time.

Now, what else we can do? So now what we are interested in the NOESY experiment is the z

magnetization. We do not want the zero quantum coherence here, we want to keep only the z

magnetization, that means we want to eliminate this. Partially it will go away because of t2

relaxation time, during the long mixing time we might have. But, then we can also do a trick

to see that this gets cancelled out. What is the trick? We do we can systematically vary this τm

the mixing time over a large number of steps.

So, suppose you were recording experiments at 400 milliseconds or 200 milliseconds you

record experiments for 200. If you are doing record with 190 milliseconds 195 milliseconds

200  milliseconds,  205  milliseconds,  210  milliseconds  the  average  till  remains  200

milliseconds. But, just around that number you vary the mixing time to a certain degree. So,

what happens then is so because that time is variant the zero quantum will acquire different

phases. So, which means acquire different phases meaning now if you take an average a sum

of all of these ones it is possible that the residual zero quantum coherence will cancel out

because these phases were systematically varying.

So they can pass over the 360 degrees. And, if you have sufficient number of steps there they

can be cancelled. Or, if you do randomly vary this over a larger number of scans and then of

course this also will cancel out. If you do a large number of increments scans because you

collect the data for number of scans, you collect 4 scans, 16 scans, 24 scans or 32 scans or

whatever so that you have a good single to noise ratio. And, for every scan which occurs in of

course in multiples of 4 as indicated in a phase cycle you keep changing the tau m value.

Then, when it is randomly varied the phases will also be random. And, when you add all of

those the zero quantum coherence scan get cancelled out.

So,  this  way  you  remove  the  zero  quantum  coherence  and  you  retain  only  the  z

magnetization.   So  this  is  an  illustration  of  how phase  cycles  can  be  used  for  selecting

particular magnetization pathways. Coherence transfer pathways or magnetization pathways

through the experimental pulse sequence.
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Now, during the mixing time the recovery of the z magnetization of the k spin causes transfer

of  magnetization  to  a  dipolarly  coupled  spin  say.  How  does  the  relaxation  occur?  The

relaxation occurs due to interaction between two or more spins. So, if the k spin is dipolarly

coupled to some other spin let us say  l spin then of course there will be a transfer of this

magnetization.  Because,  it  is  in a non-equilibrium state the system will  have to return to

equilibrium. When it has to return to equilibrium, it will pass on this disturbance so the non-

equilibrium to some other spin which is in interacting with it through dipolar interaction.

So, some portion of this z magnetization will get transferred to a real spin. Therefore, we can

schematically say it this way: That Ikz during the period τm becomes λIkz of course λ will be

less than 1. And, remain residual of that will be on the l spin. If lambda remains on k spin 1

minus lambda appears on l spin. Of course here we consider two spins only but there can be

more spins.

If there are more spins some portion will stay here and the other will get distributed to more

one spins depending upon how many spins are dipolarly coupled to the k spin. So, this is the

network of coupled spins and magnetization gets distributed through this network coupled

spins.
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So, now the density operator at ρ5, I mean we have now looked at the end of the mixing time.

So, I have written here the density operator which consists of the  z magnetization of the  k

spin plus the  z  magnetization of the l spin. This actually has come from the k spin. Notice

therefore that it also has the modulation in the t1 as per the presentation of the k spin. So, this

is although this is lz here this is modulated by cosωk t1 and cos π J kl t1. So, this along the F1

dimension it will appear at the frequency of ωk. And, therefore this is the k magnetization z

spin.

Now,  the  last  90  degree  pulse.  Both  these  are  not  observable,  z magnetization  is  not

observable.  The  final  90  degree  x  pulse  converts  this  z magnetization  into  observable

transfers magnetization. So, the kz goes to -ky so therefore you take away the minus sign put

it plus here, λky. And, similarly this will be 1 - λ Ily and this remains the same. Now, clearly

this  is  k and this  k therefore  after  t2 evolution  and things  like that  this  will  produce the

diagonal peak and this will produce a cross peak.

So,  during  the  F1 dimension  it  will  be  k magnetization  and  F2 dimension  this  will  be  l

magnetization. Whereas this term is k magnetization along both F1 and F2 dimensions. So, the

both diagonal and cross peaks have the same fine structure, that is an importance fact. You

look here both are y, so this is the ky and ly, so therefore they have the same phase, you have

the  same  phase.  And,  both  are  multiplied  by  the  same  coefficient  as  indicated  by  this,

therefore they will both have the same shape both peak shapes on the F1 dimension.



And,  here  it  will  be absorptive  line  shape because  we have this  cosωk t1cosπ J kl t1.  This

produces 2 peaks at  ω+π J kl t1 and ω−π J kl t1. So, 2 frequencies and but this will be cosine

and therefore they will be absorptive line shapes.
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Of course, in case of multiple spin systems with many dipolar couplings as I mentioned to

you before, the magnetization gets distributed through the network of spins. And, we have

already  done  these  explicit  calculations  of  polarization  transfer  during  the  mixing  time

through cross relaxation or chemical exchange in the previous classes, so this we will not

repeat  that  here.  Because,  you  remember  this  Solomon  equations,  relaxation  matrix  that

appears which describes the transfer of magnetization from 1 spin to another spin through the

process of cross relaxation or chemical exchange.

And, therefore we are not going to repeat that expression here and we simply take the final

result. There we provide the final result of the intensities of the diagonal and cross peaks.

Now, considering a symmetrical two-side exchange to A, B. Of course this exchange it can be

chemical exchange or it can also be cross relaxation with equal populations at the two sides.

If you consider a two site exchange process, equal populations at the two sites, the equal spin

that is relaxation rates.

And, equal transfers relaxation rates of the two spins of the two sites. The intensities of the

diagonal which we label here as a AA and this a BB and this is a AB and a BA are given by the

following equations:
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So, these are for the diagonal and this will obviously depend upon the mixing time. So, what

we get here, this is the final result as I mentioned to you. This is the diagonal peak intensity

will be given by 

And, this is of course dictated by the t1 relaxation time that is z magnetization is recovering

along the longitudinal axis. And this is the exchange rate and in case of relaxation, there it

will be cross relaxation rate coming up here as well.

So, where  k is the exchange rate and  t1 is the spin lattice relaxation time. The equilibrium

magnetization at the two sites is assumed to be the same. Now, you can see here when tau m

is 0, so this term is 1 and this term is 1, so what you get here? 1. So, therefore the intensity of

the diagonal peak is maximum and that is 1, it is essentially normalized. And what about the

intensity of the cross peak? If τm=0, say this one is 1, therefore 1 minus 1 goes to zero and

this is of course 1.

So, intensity of the cross peak is 0. So, if now plot these two functions as a function of τm,

along this axis you have the intensity of the diagonal or the cross peak. You see the diagonal

peak intensity decreases like this as per this equation. And, the cross peak intensity goes up

like this and transfer and then of course after some time this also decreases. This is because of

what the process called as spin diffusion which has been discussed earlier, that is the relay of

magnetization from one spin through the network of dipolarly coupled spins.

 



Now, it will initially increase to the nearest neighbor exchange spin. And then if there is spin

diffusion occurring two multiples spins then of course it can decrease. This is in the case of

cross relaxation and this is dependent on the inter proton distances and how many protons are

close  by  in  space  that  determines  how this  diffusion  transfer  is  happening,  what  is  the

efficacy of this transfer from one spin to another spin. But, of course in the initial times when

the mixing time is short, then of course it is linearly dependent on the mixing time and the

transfer will be restricted to the 1 spin only. Whichever one is the closed it will go there only

and that will have a specific application.

(Refer slide Time: 22:15)

Now, if you took the ratio of the diagonal to the cross peak intensities and this will give you

Now, for short mixing times tau m compared to  t1 this will get reduced because you can

simply expand this and you will get here this will be  1−2 k τm. 1, 1 will cancel. Then, you

will have only k τmbelow and here you will have 

 

 



So, we can see that this is directly related to tau m and by doing experiments at different τm

values you will able to measure the exchange rates. Thus by monitoring the intensity ratios as

the function of tau m the exchange rates can be calculated.
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Now, in case of cross relaxation mediated transfer the cross peak intensity is proportional to

the cross relaxation rate. As discussed in the previous classes and here will be write that the a

AB the cross peak intensity is proportional to 

Where  σ ABis  the  cross  relaxation  rate  and we have  also seen the  cross  relaxation  rate  is

inversely proportional to the inter proton distance.  If you are talking about proton proton

NOE, it is rated to the inter proton distance and to the inverse 6 power of the distance.

Therefore,  if  you perform experiments at different values of tau m then you can actually

estimate the cross relaxation rate here. What you do, you measure this cross peak intensities

as a function of tau m and then if you fitted to a linear equation you get the σ AB. Once you get

σ AByou can calculate the inter proton distance  r. So, this allows estimation of inter proton

distance in complex molecules from NOESY spectra recorded with the short mixing times.
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So, this  is  the very important  observation  and it  has found extreme value in  majority  of

applications.  In fact the large amount of biological NMR is now based on this  kind of a

concept.  Structural  determination of large molecules  has become possible because of this

kind of a strategy. So, here is an experimental example here, this is a molecule which has

large number of protons here. Say so many protons are there are labelled here with A B C D

E F G H and so on so forth. And, this is the two dimensional NOESY spectrum.

This is the diagonal, you can see the diagonal here the black and all your cross peaks here are

in red. So, this is the one dimensional spectrum and it monitors the intensities of all of this.

And, you can actually establish correlations firstly with regards to which protons are in close

proximity. And they also have different intensities because there are different inter proton

distances. By looking at the intensities of the peaks here, you can actually the various inter

proton distances.

So, you have so much information here and all of these peaks which are present here are the

carriers of structural information. You quantify all of these peaks here then you will be able

to establish the network of inter proton distances here. And, it will allow you to determine the

structure of the molecule. And this is an extremely important application for chemistry and

biology.  This  picture  has  been  taken  form this  book  here,  the  Timothy  Claridge,  High-

Resolution NMR Techniques in Organic Chemistry.

So, therefore we have discussed here the important application of the NOESY with regard to

the structure  determination  of molecules.  And, while  this  is  an important  thing  from the

application  point  of  view  we  also  demonstrated  how  pathways  can  be  selected  by



appropriately choosing the phases of your pulses and the phases of the receivers. Adjust them

so that you select what you want in your spectrum. If you chose coherences then you get J

correlated spectra. If you choose z magnetization, then you get dipolarly correlated spectra

which protons are correlated through dipolar interactions and therefore they carry distance

information.

In  the  other  case  the  J coupling  information  is  obtainable.  So,  this  2D  NMR therefore

provides the variety of possibilities  for obtaining the desired kind of information in your

spectrum. And that has the therefore been the biggest revolution in NMR spectroscopy. So,

we will stop here and continue with other pulse sequences in the next class.


