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Two Dimensional Correlation Experiments 

We are now going to go were to second category of Two Dimensional Experiments, namely

Two  Dimensional  Correlation  Experiments,  these  have  been  by  far  the  most  useful

experiments for studying a variety of systems large systems small systems extra,  and has

been extremely useful in characterising molecules. Understanding the fine structures in the

molecules understanding the connectivities of the individual carbons in molecules and so and

so forth.

And the typically it started with homo nuclear proton correlation experiments but today we

also various kinds of correlation experiments which deal with proton or carbon 13 and proton

with nitrogen 15 and so on so forth.

So, first we will look at the proton-proton correlation experiments and this because in the

initial years it was all homo nuclear proton experiments only which we have design and they

we use  for  variety  of  purposes.  So,  this  experiment  is  called  as  the  COSY, a  correlated

spectroscopy, so the abbreviation is COSY and it  is very commonly used for all  organic

chemistry and biochemistry and biological chemistry and what not.
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So, this experiment consist of simple pulse sequence it is a an experiment with the 2 pulses

you start with a 90 degree pulse it can be x or y or whatever but conventionally we are simply

sticking to x all the time and then you followed by t1 evolution period then you have a another

90 degree x pulse and followed by the detection during the period t2. 

So, in this period of course you may have this what we call as a preparation this includes the

90x pulse in the preparation then you have the evolution this pulse 90x pulse here itself acts

as the mixing pulse in the generalise context of 2D spectroscopy and this is a mixing pulse

and then you have the detection here of the signal during the t2 period.

Now, we will see that this kind of an experiment produces spectrum of this time, this is a

schematic experiment. So, if I call this as F2 axis which is where we actually detect the signal

and this is the indirect detection axis we call it as  F1 and that come as a result of Fourier

transformation along the t1 dimension.

And now let us see what is the information here, if you generate peaks like this so I will have

a so called a diagonal here the diagonal will have the same frequency along the F2 and the F1

axis so therefore this all this peaks which are here they have the same frequencies whether it

is along the F1 or F2 axis.

Now, then it displays correlation here it displays these are called cross peak and the cross

peak displays a correlation between this particular spin and this particular spin, call this as

protons is this proton and this proton there is a correlation between these two, where does this

correlation arise from? This arises from the coupling from the J coupling. 

In  this  experiment,  the  correlation  arises  the  result  of  a  J coupling,  these  2  protons  are

coupled to each other and therefore it produces a cross peak here and this is called as a cross

peak or the off diagonal peak.

And now we notice that this peak is also attach to another proton and that is this proton is

also coupled to this proton, therefore we generate a cross peak here as well between these 2

protons. So, therefore this forms a network, so you have a network of spins here these 3

protons are coupled to each other this is coupled to this and this is coupled to this and we

produce peaks on both sides, so this will be symmetrical spectrum here and no matter which

side of the diagonal you use the information is the same.



Now, if there is a proton in your molecule which is not coupled to anything it will produce

what is called as a singlet and it will not have any correlations along any of the axis there,

therefore it will be easy to identify which of your protons of singular which are not coupled

and which of your protons are coupled and what sort of coupling pattern spins system exist in

your molecule. So, this is an extremely useful information for characterising your molecular

structures.
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Lets, try an understand this using our the standard method of product operator calculation.

So, this is the cosy of two spins, once again which use two spins k and l, so at the time point

1,  so I have written here time point 1 2 3 and 4 we will  explicitly  calculate  the density



operator at this individual time points, so that we know what is the information content here

and how the information is flowing through the pulse sequence.

So, at time point 1, so I have the equilibrium magnetization, so the density operate is

 Considering the 2 spins. Now, individually we can calculate the evaluations of this through

the  pulse  sequence  but  later  form  demonstration  we  will  consider  only  the  k spin  and

whatever  result  we generate  similar  calculations  can  be  done for  the  l spin  as  well  and

therefore we do not want to repeat that for the 2 thing.

So, we consider the calculation for the k spin only in the further discussion. Now, so if I

apply 90x pulse to the k magnetization I generate 

As before. Now, this evolves under the Zeeman Hamiltonian which is  ωk Ikz for a period t1

yielding the density operator ρ3 at time point 3 in the pulse sequence.
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So, now considering the chemical shift evolution the  Iky terms who all in this manner the

minus sign is kept out here, so I have 

 

 



Now, we have to consider  this  further  for evolution under the coupling next considering

evolution under J coupling Hamiltonian which is 2π J kl Ikz I lz so the density operator will be

let say ρ3 ' prime.

So, the ρ3 ' will be even by keep this minus sign as before and now we individual terms this

operators we have to evolve under the coupling. So, Iky evolution gives you this 

Now, so this is the density operator at the end of the t1 period.
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Now, what  we are doing at  the  end of  the  t1 period we are  applying a  90 degree  pulse

sequence. So, here we notice that after we apply the 90 degree pulse these terms will get

transform into the particular manner we get here at 

 

 

 



The second term remains like this the kx is not affected so it remains as kx cos π J kl t1but here

you  see  there  is  a  change,  so  I  get  here  −2 I kz I lysin π J kl t1 sinωk t1.  Lets,  look  at  this

individual terms. So, you see this one is  z magnetization of the case  k spin, and this is a

mixture of a double quantum and 0 quantum conversances and this is the x magnetization of

the k spin now this one here is the l magnetization this is the y magnetization of the l spin

which is anti-phase with respect to k.

Therefore you see the 90x pulse the second 90 degree has cause a coherence transfer from the

k spin to the l spin. So, from the k magnetization we have generated l magnetization here, so

this represents a coherence transfer, both this are single quantum terms although this is anti-

phase this in phase whereas this one is z magnetization and this is multiple quantum transition

here.  You notice  that  this  entire  this  operators  do not  lead  to  observable  magnetizations

during the t2 period.

Because the next what we are going to have is evolution during the  t2 period. Whatever is

observable there we are going to return and what is not observable we will ignore, because it

is not going to lead to us any signal. Therefore, these two terms here we can ignore because

though this once do not lead to observable magnetization.

And these once actual  lead to observable magnetization both these are observable  terms.

Now, the first term which represent x magnetization of the l spin evolves during the t2 period

with  frequencies  characteristic  of  k spin.  So,  during  the  t2 period  this  evolves  with  a

frequency ωk in the t1 also we have ωk in t2 also it will be ωk.

Therefore this will produce the so called a diagonal peak which have mention you earlier

F1=F2=ωk in the final 2D spectrum. The second term which represents y magnetization of l

spin evolves under the t2 during the t2 period with frequencies characteristic of l spin.

Therefore, this will have t2 during the t2 period this will have frequencies of l spin but t1 it had

frequency of  k spin, so therefore this is will be  F1=ωk and  F2=ωl therefore this produces

what is called  as the cross peak in the final 2D spectrum. Both, these peaks will have fine

structures, which contain the coupling information.

And this we will we can calculate we can see that immediately from here that the Jkl term is

appearing  here and therefore  we will  have coupling  information  in  the in  this  individual

peaks.
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Let, us first consider first consider the diagonal peak term, the diagonal peak is arising from

Ikx the first  term in this  observable  part,  so chemical  shift  evolution  leads  to  the density

operator ρ5d this is during the t2 period. So, I call this as ρ5d and this is 

So, you recall back and that is just this cos π J kl t1 and sinωk t1 so I call this as fd (t1). And now

we consider evolution of these terms under the coupling, evolution under coupling generates

the density operator ρ5d '  given by this formula here ρ5d '   is now coming from the evolutions

of the individual terms here.
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Now, among this depends upon what signal we are going to measure and we will have to see

what  was  the  components  which  we  have  to  retain.  Let,  us  assume  that  we  detect  y

magnetization, you will have to take the trace of the density operator with Iky, so when we do

that we will only have this one here this will represent our signal, 

Not it is the pattern of this evolutions of the terms in the t2 and the t1 are the same, here is an

sin cosine multiplication and the again here it is sin cosine multiplication. So, if we want to

expand this further, so this will give me, so this the same thing which will written here

 

 

 



So, what does this tell you that already indicates you there are going to be 2 frequencies along

ω2 that is ωk+π J kl or if you want to take out the to in terms of the hertz if you want to write 

frequencies then it will be νk+
J kl
2

 and this will be νk−
J kl
2

  because if you take away the 2π  

term here so this will be νk−
J kl
2
, νk+

J kl
2

 .
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Similarly here along the  F1 dimension also I will have 2 terms the  νk+
J kl
2

and  νk−
J kl
2

, so

therefore this entire diagonal peak will have 4 components 2 into 2 therefore this will produce

4 components.

And were this the signal that we detect were blue this one appears now I write in terms of the

frequencies removing the pi part, so I will write in terms of the frequencies. 4 peaks with a

dispersive  line  shape,  why  do we say  dispersive  line  shape?  Because  this  all  have  sign

dependents  and we have seen earlier  that  if  there is  a  time domain signal  which is  sign

dependent it will produce me dispersive signals.

So, we will have a frequency peak at νk+
J kl
2
, ν k+

J kl
2

 along F1 F2 dimension then I will have

here νk+
J kl
2

 and νk−
J kl
2

this is along the F1 this is along the F2 and this is again νk−
J kl
2

 and

νk+
J kl
2

and νk−
J kl
2

and νk+
J kl
2

.

So, we will have 4 peaks this are centered around the νk frequency, νk is my frequency of the

k spin so and all of this are positive because you see the pervious thing they all have positive

components here this are plus plus plus all of the plus this is plus this is plus this is plus so all

are plus. Therefore, I will have all positive peaks and they all have dispersive line shapes. 
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So, how does the spectrum look like? So, this is way the spectrum will look like I had drawn

the diagonal here so which is running through, so the similar calculation for the l spin will

produce may this 4 peaks, there are 4 peaks here, for the k spin when I will shown you the

calculation for the k spin, so all of these are dispersive line shapes and the all have the same

sign.

And it will produce many peak of this type. And like wise if you did for the l spin you will

produce a spectrum of this type. And now this spectrum has been taken from one of the books

NMR techniques in organic chemistry and spectacular things have been a drop and this will

come in the next class when I will actually discuss as the cross peaks as well here.



And those peaks are also present here at this point, those will be the cross peaks. So, I think

we discuss the diagonal peak here and in the next class we will look at the cross peaks how

they appear, so you can look at this things once more at where this peaks appear and we have

the peaks appearing at the  νk+
J kl
2

 νk+
J kl
2

 νk+
J kl
2

 νk−
J kl
2

 νk−
J kl
2

 νk+
J kl
2

and here is  νk−
J kl
2

and νk−
J kl
2

.

So, therefore this produces a spectrum which is like this and we will see later that this sort of

a dispersive line shape is not a very desirable thing and obviously one has to do something

different there to get better line shapes in this point, otherwise this will mask your signals

which are closed to the diagonal and that has been one of the problems of the normal cosy

experiment and development switch happen to remove those.

And we will see of course in the next class how the peaks appear in the correlations which is

the cross peak and we have consider one part of the density operator now we will had to

consider second part of the density operator at time  ρ4 and which will then produces the

signal which produce the cross peak. So, we will stop here and continue with cross peak

calculation in the next class.      

   

 


