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Lecture 44 – Two Dimensional Separation of Interaction in NMR

So we have been discussing two dimensional separation experiments in NMR and in the last

class we talked about 2D heteronuclear separation experiments where the chemical shifts and

the coupling constants were separated around the 2D dimensional 2D experiment. So we are

going  to  extend  this  discussion  to  homonuclear  experiments,  homonuclear  2D  (JRES)

experiments.
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So this is generally represented as (J-RES) NMR or 2D J-Resolved NMR. So the difference

here  will  be  because  of  the  homonuclear  coupling  constant  that  will  be  present.  In  the

hetronuclear  experiments  which  we  discussed  earlier  13C was  the  heteronuclear  and  the

proton was the other nucleus. So we are talking about the coupling constants between carbon

and proton.

And we did not talk about the homonuclear carbon-carbon couplings because we are working

at natural abundance and therefore the chances of carbon-carbon coupling occurring is very

very small.  But in homonuclear proton experiments there is always will be proton-proton

couplings. So therefore homonuclear 2D J-Resolved experiments with protons actually leads

to some additional complications and we are going to discuss that today.



So the pulse sequence is very similar to the previous ones except that of course you only have

1 channel here. So we have the proton channel,  so the experimental sequence is like this

sequence as before, it starts with a 90˚x pulse followed by the 
t1
2

period and then 180x pulse

followed by another 
t1
2

 period. These two together constitute the evolution period.

The 180 pulse is put in the middle of the evolution period and then the detection happens

during  the  t2 period  here.  So  this  is  the  detection  period.  Now of  course I  put  here  the

numbers  1,  2,  3,  4  to  indicate  the time points  and these  will  be used when we actually

calculate the product operators at the different time points. Notice here during the t1 period

chemical shifts are refocused, this we have seen before when we discussed the spin echo,

these chemical shifts are refocused during this spin echo.

There is spin echo happens at this point, so chemical shift evolution happens only during t2.

On the other hand coupling evolution occurs all through t1 and t2. So this will be reflected in

the 2D spectra.
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So consider a two spin system for understanding the experiment it weakly coupled two spin

system k and l. So each one will produce the doublet. So if this is the chemical shift of k spin

it has doublet with 2 lines separated by coupling constant  J. Similarly the  l spin also is a

doublet with the lines separated by the coupling constant J.
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Let us try and understand this experiment using product operator calculations. At time point 1

the density operator is 

the magnetization is along the Z axis and this is the density operator for the magnetization at

time point 1. And when you apply 90x pulse now we apply to both the spins and this for this

will result in y magnetization of the both the spins. So 

Now this row 2 evolves under coupling for the period t1 + t2, you remember we can calculate

the evolutions of the spins under the influence of the chemical shifts or the coupling constants

independently, it does not matter which one we calculate first and which one we calculate

later. So in this case we will first calculate the coupling evolution and this happens for the

whole period t1 + t2, let us consider for one of the spins, the same applies to the second spin as

well.

So we consider the calculation for the spin k. So therefore this
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Among  these  you  also  recall  our  previous  discussion  that  this  anti  phase  term  is  not

observable because the trace of this with whether you take with  Ikx or  Ily it goes to 0 and

therefore this is not an observable term. Whereas this is, it represents in-phase magnetization

of k transitions and therefore this will be an observable term and therefore we have only this

term to consider for further calculations.

Now what we do, we take this term and calculate chemical shift evolution of the observable

term during t2. So this gives me 

Now let us assume that detect the  y  magnetization which is without loss of any generality.

This we can do this to understand the experiment and the principles behind it.

Therefore the signal here will be 

Of course notice here this sign appears because we applied x pulse or it could be considered

without this minus sign as well. If you apply the 90 -x in the beginning then you would have

only  the  Iky term.  So then  ofcourse  this  minus sign  is  of  not  much consequence  for  the

understanding of the experiment just now.

 

 



So therefore the signal that we will detect will be just this: cos sinωk t2 , cosπ J kl t1+t2. Notice

here that the coupling constant evolution modulates the detected signal and it has both the t1

and the t2 dependence, therefore this is the very interesting situation. What is the consequence

of this, we will see.
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So now let us expand this, 

that comes from the expansion of this term and cosωk t2. So we see here that along the t2 axis

there are both chemical shifts and coupling constants, you see the chemical shift is here and

the coupling constant is here.

Whereas along the t1 axis there is only coupling and similar calculations are valid for the l

spin also. So we consider here for the k spin and the same kind of terms will appear for the l

spin except that here you will have ω l instead of ωk.
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Now let us look at this in somewhat greater detail. What sort of spectrum it will produce?

Now to understand this let us try and expand the term which I wrote in more explicit detail.
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Let us now calculate explicitly the appearance of the 2D J- resolved spectrum by expanding

this the density of operator what we got in explicit terms. We can assume without loss of

generality that the chemical shift of the k spin is 0. So in which case the density operator what

I have is cosine by the signal what I have is cos π J (t1+t2) and I am not writing the Jkl here

because it is implicit that it is between the two spins k and l.

So this I have to expand, this gives me 

cos π J (t1+t2)=cosπJ t1 .cosπJ t2−sin πJ t1 .sin πJ t2



Now this is equal to 

¿
1
4 {(eiπJ t 1+e− iπJ t 1) . (eiπJ t2+e−iπJ t 2)+ 14 (eiπJ t 1−e−iπJ t 1) . (eiπJ t2−e− iπJ t 2)}

So therefore this expansion will have total of 8 terms. Let us write these 8 terms explicitly 

1.eiπJ t2 .e iπJ t 1 ,2.eiπJ t 2 .e−iπJ t1 ,3.e−iπJ t2 . eiπJ t 1 ,4.e−iπJ t2 . e−iπJ t 1 ,5.eiπJ t 1 .eiπJ t2 , 6.e−iπJ t 1. e−iπJ t 2 ,7.e−iπJ t 1 .eiπJ t2 , 8.eiπJ t 1 .e−iπJ t 2

So these are the 8 terms we have here and let us see what sort of spectrum this will produce.

So we have here, we have assumed that the chemical shift is 0, so assume the chemical shift 0

frequency is here, then along the F2 axis, this is the F2 axis, this is the F1 axis, I have the J

information here and let us assume that the peaks that doublet the peaks will be shifted by  
J
2

,

this will be 
J
2

 and this will be 
J
2

again.

This is on the plus axis, this is the plus sign and this is the minus sign. So the 0 frequency if it

is here is 0 and on this axis I will have the +J and on this side I will have the -J. So because

they will be shifted from the centre one side we take it as a positive frequency, other side will

be the negative frequency. We take this side as plus and let us say we take this side as minus

here, then I have 0 line at this point and now let us see what each term gives me.

The first term gives me along the t2 axis 
+J
2

 that is at this point and it will produce a peak at

+J
2

  on F1 axis, so it will produce me a peak here. The second term will produce me at the

same point but on the 
−J
2

 here and that will produce a peak here, the third term will produce

at 
−J
2

 and at 
+J
2

  on the t1 axis and that will be a peak here and the fourth term will be at 
−J
2

along F2 
−J
2

 along F1 and that will be peak here.

Now the fifth term is 
+J
2

  along the t1 and 
+J
2

  along this, so they have still this will be at the

same place here. So I will add here to that, so there is a fifth term produces the addition at this



point and the sixth term will be e−iπJ t1 . e−iπJ t 2 this will be 
−J
2

 along this axis and 
+J
2

 along

this. So that will be here, so this will be a minus here because this will be subtraction here

and the seventh term this will be 
−J
2

along the F1 and that is here and 
+J
2

 along the F2 and

that will be here and this is again a minus sign.

So that will, this will subtract here and the last term is 
−J
2

along the F2 and 
−J
2

along the F1

and that will  be here this will  add, so therefore this will  be plus. So now what happens,

therefore these two will cancel and these two will co add, therefore in the end you will see

that in the spectrum these peaks are not present and will only have peaks here. Now these

peaks are if you want to look at it in this manner they are actually tilted with respect this by

an angle which is 45 degrees because this is 
J
2

and this also 
J
2

.

So therefore this is an isosceles triangle. So this angle is 45 degrees. So this is the way the

spectrum will appear and see in the explicitly in this schematically I have shown this in the

next slide.
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So this is how the schematically the spectrum will appear and we have actually calculated

why this comes in this manner. We have shown it for k spin assuming the k chemical shift is

0 but that does not matter that is only for convenience, no matter what the chemical shift is

the same thing will be valid and therefore you will have here this tilted pattern here and we



will have for both the spins we have the 2 lines which are now shifted along the F1 axis at this

particular angle.

(Refer Slide Time: 15:44)

So the detected signal has both cosine and sine modulations as we saw before along both the

t1 and the  t2 axes. The cosine modulation results in the absorptive line shape and the sine

modulation results in dispersive line shape after Fourier transformation. We actually looked

at it explicitly taking the as eiπJ t 1 and things like that, you notice from the previous discussion

that when you have such a kind of phase modulation eiπJ t 1, it already implies that we are going

to get mixed phases. Therefore here along both the axes F1 and F2 axes we will have mixed

phases, mixed line shapes and therefore we cannot do a phase sensitive experiment in this

situation and we have to do a magnitude mode calculation.  That means the square of the

absorptive signal and the square of the dispersive signal take the sum and then take the square

root and that is called as the magnitude mode calculation of the spectra.
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So when we did that of course you get a spectrum which is like this. However we can do a

further manipulation of the spectrum by what is called as shearing transformation. We do not

want this to be oriented like this. If we were to take a projection of the spectrum like this it

will produce me the same one dimensional spectrum as before but we want to remove tis

coupling information along this axis, keep it only along the F1 axis so that you have complete

separation of the chemical shift and the coupling constants along the two orthogonal axes.

So what we do, we can do a manipulation of the spectrum after data collection after Fourier

transformation, this is called the shearing transformation. So we move this peak to this point

and move this peak to this point. Similarly we move this peak to this point, move this peak to

this point, this is artificially done.
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So when you do that you get peaks like this, this separation is Jkl and we have removed the

coupling  information  along  the  F1 axis  completely.  So  therefore  if  we  were  to  take  a

projection now so we have only one line, here you also have only one line and you have the

coupling constant present along the  F1 axis. So this is the clear separation of the chemical

shift and the coupling constants along the two orthogonal axes.

(Refer Slide Time: 18:03)

You can extend this calculation to more complex spin systems, we did it for two spins now

but you can have more, you can have 2 spins 3 spins coupled and then you will see you will

multi plates appearing like this. This will be the doublet as we saw before and here you will

have doublet of the doublet and here you will have the triplet and so depending upon the

nature of the spin system we will different fine structures here and that is what will be helpful

to measure the coupling constants in accurate manner.
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So what are the advantages of this? So we can measure the coupling constants in the chemical

shifts they are clearly separated, the homonuclear broadband decoupled spectra along the F2

axis, this is the unique feature, it is extremely difficult to obtain a homonuclear decoupling,

homonuclear broadband decoupling. We have discussed earlier how to selectively decouple

one spin from the other but here we are decoupling every spin from every other spin.

So therefore along the F2 axis you have homonuclear broadband decoupled spectra and this

improves  the resolution  in  the spectra  because along one axis you do not  have coupling

information at all and then coupling constants can be measured with high accuracy and notice

also that because we used the spin echo, the homogeneity is refocused along the F1 axis and

this is extremely useful feature and you will  have better  line shapes and accuracy of the

measurements can be high. Although of course we lose some of this because of the mixed

phases, because of the magnitude mode calculations some resolution will be lost.

However  along the  t1 axis  now you see the spectral  width is  extremely  small,  it  is  only

determined by the J coupling information and the J values are not too large, the homonuclear

couplings are of the order of 8 to10 hertz. So even if you go like doublet of a doublet or

doublet of doublet of doublets, then it will go not more than 40-50 hertz. Therefore your

increment along the  t1 axis will be extremely large compared to what you have when you

have the full chemical shift information along the F1 axis.

Therefore with in a small number of experiments you can have very high acquisition time

along the t1 domain and that will produce very high resolution in the J-Resolved spectrum.
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Now let us look at some experimental data here, so here is an experimental spectrum of some

particular molecule it does not matter what it is. You can see here very nicely these all peaks

and here you have a doublet of a doublet and doublet of a doublet and this is more complex

spin system here. Now you do 45 degree shearing that means you move all of these peaks but

to this line. So move all of this to this line, notice of course the extent to which you move will

depend upon the peak where it is appearing, how much it is tilted away from here.

So you do shearing transformation of all of this, all of this will move along this axis, this will

move here along this axis. So you get now all of them along one line here, one line here and

one line here. So if you take a projection you will have a fully decoupled spectrum and if you

take cross-sections here then you get the fine structures of the individual spins and it will

allow you to determine what is coupling constants and sort of nucleus it is, to how many

protons it is coupled and so on. So we stop here and continue with other methods in the next

classes.                                    


