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Lecture 41
Two Dimensional NMR – Part I

So let us do a recap of the last lecture and this is the slide which kind of summarizes what we did

in the last lecture.
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This is two dimensional NMR and this is based on the concept of segmentation of the time axis

and the time axis is separated into 4 periods like this to the preparation period and then you have

the evolution period t1 and the mixing period, then you have the detection period t2. These are

time variables which means you will do lots of experiments, a series of experiments varying the

values of t2 and the data is collected as a function of time during the detection period t2.

Therefore it generate a two dimensional data matrix. In of course in every case of the preparation

and the mixing remain the same. They remain the same. So you systematically increment the

value of t1 and collect an FID. So if you have to do signal averaging then you have to do for each

value of the t1. So we will have to start with the 0 value of t1, then you have 1∆t1, then you have

2∆t1,  3∆t1 and  so  on  so  forth.  You collect  a  large  number  of  FIDs  so  you generate  a  two

dimensional matrix of FIDs. 



So many FIDs as many increments you use in this evolution period and then we said that you

have to do a Fourier transformation that you first do a Fourier transformation along the way of

two dimension. Then you do a Fourier transformation along the one dimension. That means that

against the  t1 period the first this will be for the  t2 time variable, other one will be for the  t1

variable and this generates a two dimensional spectrum which is indicated like this. 

So  that  is  if  you  have  a  frequency  here,  a  particular  frequency  which  is  indicated  by  this

particular  line  here,  so  during  the  evolution  period  then  during  the  mixing  part  of  this

magnetization of the spin is retained and part of the thing is transferred to another spin well.

 Suppose I take with the k spin then I transfer part of it to the l spin and that appears is a cross

peak here on this and the whatever remains on the  k itself, which evolves during the period  t2

appears as a peak here and this is then called the diagonal peak and this is the cross peak. 

Similarly,  if I have a frequency  ω l during the period  t1 evolving and then during the mixing

period for the same interaction there will be transferred to the k spin. Then therefore here you

will have part of the magnetization on the k spin and part will be on the l spin. So they evolve

with the respective frequencies, so the data you collect here will have two frequencies. So it

generates after the 2 dimensional Fourier transformation. A diagonal peak here and a cross peak

here. So it reproduces a symmetrical spectrum like this.
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So,  now  let  us  go  into  more  details  with  regard  to  the  mathematical  operations  which  is

important to understand the phenomena in greater detail because there is going to be more and

more experiments coming in and this will depend upon what sort of preparation you do and what

sort of mixings you do and depending upon due to generate various kinds of data bodies and it is

important to create a formalism or a general formal structure to analyze these kind of spectrum. 

So let  us first  therefore  look at  two dimensional  Fourier  transformation.  A two dimensional

frequency  spectrum,  which  will  represent  by  the  frequencies  F1 and  F2,  the  two  axis  are

represented as  F1 F2 will be generated from a two-dimensional time domain data set which is

represented as  S(t1 , t2) by two dimensional Fourier transformation.  So this is mathematically

represented in this manner. 

S (F1 ,F 2)=F {S ( t1 , t2) }=F
(1)F(2)

{S (t1 , t2)}

and now these two Fourier transformations are separately written here. 

This one along the t1 axis other one along the t2 axis so this is the operators for the 2 and here you

have the time domain data  S (t1 , t2 ).  F1 and F2 represent Fourier transformation operators along

the t1 and t2 dimensions respectively. These have to be carried out independently. 
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Let  us look at  that in somewhat more detail.  So here you have the formula for this  Fourier

transformation. 

This ω1 and ω2 are the Fourier transformation frequency variables along the t1 and the t2 hence,

and S (t1 , t2 ) appears here, of course at the end as a two dimensional data body. So these Fourier

transformations integrals are calculated independently one after the other. 

Conversely, so if you want to get the time domain data here it is an inverse Fourier transform of

the frequency domain spectrum,  S (F1 ,F2). This is the inverse Fourier transform F inverse and

this again can be split into the 2 individual inverse Fourier transform, 

So put it in more explicit terms you have this is explicitly given as 

 

 



now  this  is  the  variable  of  the  frequency  spectrum  and  this  is  the  Fourier  transformation

spectrum what in the. 
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Now generally the time domain function is a complex function. Let me try explain this to you.

We have seen when we do data collection in the one dimensional experiment  you have this

frequency axis and if the magnetization is here and if this is precessing along this during the

detection period and the detection here and here possible, so this component of the magnetization

as it comes here, it generates a cosωk tand this component produces the sine part and we write it

as i sinωk t  for the k spin. 

If it is going with the frequency ωk then we will have the FID which we are going to collect by

collecting both these components will have these 2 terms cosωk t+i sinωk t and to represent their

orthogonal say this i is coming here. So therefore this is a complex signal. 

You do the same thing for  t1 and  t2 axes and therefore here in general this  S (t1 , t2 ) will be a

complex function and we will write that as a real part and an imaginary part. So here you see this

 



is the real part and this is the imaginary part. So in two dimensional data matrix as well, we will

have a real part and also an imaginary part will write in this two dimensional data body.

Explicitly 

This is with regard to the spectrum.

Although I use the same symbol here but notice this actually will be the discriminating factor.

The variables here are  F1 F2. Variables here are  t1 t2 therefore this is simply to indicate as the

signal what you are going to measure then the two cases. 

Now, this Fourier transformation in general can be written as a sum of 2 transformations. This

we have already seen. 

a general Fourier transformation is written as a sum of these two. What are these? This is the

cosine Fourier transform and this is the sin Fourier transform.

So when we write the general variable as e−iω1 t 1, so this is the can write it as cosω1t1−sinω1 t1

Therefore this actually will have two components 

and that will have an i factor. 

 

 

 

 

 



So therefore the first  term will  be the cosine transform and the second one will  be the sine

transform. Therefore we write here F the general Fourier transformation as 
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Now we apply this formulation to both the domains. So this is for the first domain which is the t1

domain and this is for the t2 domain. Time axis of 

So now what you do? You do these operations explicitly independently all of them. So you will

have this operating  FC
2 operating on this and on this, likewise  F S

2 operating on this and on this.

Similarly  after  that  you  get  this  FC
1  operating  on  the  result  of  those  two  and  likewise  Fs1

operating on the results of those two. 

Therefore, you can combine these two together say 

So as a result of this what you get, you get the real terms with do not have the  i part and the

imaginary terms as the frequency domain spectrum which has the i part.

 

 

 



So which are the ones which gives the i part? The real part Fcc this, this and this, this gives me a

real part. Plus and multiplication of this, this and this. 

Likewise you also have Fsc that is this one, this one and this one, because you must have one i

from here and one I from here. So this one, this one and this one. 

So F sc {Si (t1 , t2)} all of these will be real and likewise if you see the Fcc operating on i so this, this

and this will give you F cc{Si ( t1 , t2)}  because this will have the i component here and therefore

this is imaginary and similarly -Fss that is this product and product with this. 

So this will be i2 then you have another i here and therefore you will get −F ss {Si ( t1 , t2)} and then

you will have  −F cs that is this one and this one operating on this  F cs,  FC
1
−i F s

2 operating on

Sr ( t1 , t2) that gives you this term. 

So this is again imaginary because of this i. Then you have −F scand Sr ( t1 , t2) sc that means it is

this one, this one operating on Sr ( t1 , t2). This will have the  -i component therefore you get the

minus sin. So F sc {Sr ( t1 , t2) }. 

Now let us write these terms explicitly 

and what about this F ss. F ss that is this one here. So it is sin transform along both the dimensions

therefore here you have 

so this is also a real number.
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So likewise now if I took  F cs so along the  t1 dimension I have the cosine Fourier transform

therefore this is 

Similarly this F sc  is along the t1 dimension I have 

So I have written here all those explicitly for the real part of the frequency domain spectrum. 

Now, you can do similar equations for the imaginary part of the Fourier transformations Si (t1 , t2 )

as well, all of these you notice here our Sr ( t1 , t2)and so similarly you can write for the Si (t1 , t2 )

what terms that will come. Now the FID is of course within transformations actually go from

minus infinity to infinity but for time less than 0 there is no signal. Therefore these FIDs will

 

 



have  0  signal.  Therefore  for  ( t1 , t2)≪0 there  is  no  signal.  Transformations  will  have  to  be

considered only for the range 0<t<∞. 

(Refer Slide Time: 16:35)

So that is so much the formalism for the Fourier transformation. Those are the definitions. Now

let us look at the end of this what sort of spectra we will get, what sort of the peak shapes we will

have. What does the Fourier transformation yield? So we recall the Fourier transformations in

the  normal  case  1  dimensional  Fourier  Transformations.  We  will  have  real  and  imaginary

components and we will had different peak shapes. The peak shapes will be absorptive peak

shapes and dispersive peak shapes. So here also we can expect a similar thing. So what we will

do is let us explicitly consider 2 particular transitions.
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Let us say we have an energy level diagram something like this various energy levels at various

places and let us represent this energy levels with particular symbols that is called this energy

level as t and this energy level as u and let us call this energy level as r and this energy level as s.

There will be transition from here to here and this will be represented as a tu and there can be a

transition from here to here. This will be represented as rs transition. This is a tu transition and

this is an rs transition.

Now, we assume that  during the evolution period there  is  a  particular  transition.  There  is  a

particular frequency tu and this tu we write it as ω tuand this transition will therefore write it as

ωrs. So let us go back and see what we are going to get. 



(Refer Slide Time: 18:16)

Considering a particular combination of coherences between levels r and s. Now r and s is taken

in t2 domain and t to u in the t1 domain. The time domain signal for this pair will be Srs , tu(t1 , t2)

and we have here, well in fact  tu is  ω tu is taken as in the  t1 dimension and  ωrs is taken as  t2

dimension. Complex signal is written as 

Now this coherence,  this  is the coherence this  is the coherence in the transverse plane.  This

coherence  decays  and  these  decays  with  the  transverse  relaxation  rates,  and  these  are  the

transverse relaxation rates. 

λtu is the transverse relaxation rate for the transition tu and λrs is the transverse relaxation rate for

the rs transition and so therefore this decay has to be included in the FID. This is a free induction

decay along the t1 axis and this is a free induction decay along the t2 axis.
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Now let us define this particular term Zrs ,tu=S rs, tu this is the amplitude. This is amplitude for the

after  the  Fourier  transformation  what  we  get  for  the  frequency  domain  spectrum.  This  is

amplitude and the frequency domain spectrum is now written as Srs , tu(ω1 , ω2) and this is given

by this expression and that actually comes from this particular integral as I can show you here. 
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∫
0

∞

e−iωtu t 1e− λtu t 1e−iω1 t1dt

So pulling the terms. So this will be 

∫
0

∞

e−i (ωtu+ω1 ) t 1e−λ tu t 1dt

So this is equal to I will write here. This one is next step. This is equal to 

∫
0

∞

e−[ i (ωtu+ω1)+λ tu] t 1dt

e
−[ i (ωtu+ω1)+λtu ]t 1

−[i (ωtu+ω1)+λtu ]
¿0
∞

So if you want to expand this and this will be given as the first at the value of the infinity and

then minus the value at 0. So this is explicitly writing it as 

e
−[ i (ωtu+ω1)+λ tu ]t 1

−[i (ωtu+ω1)+λtu ]
¿t 1=∞

e
−[ i (ωtu+ω1)+λ tu ]t 1

−[i (ωtu+ω1)+λtu ]
¿t 1=0
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At t1=∞→0, because e−λ tu t1=0. At t1=0the numerator = 1. Therefore we get finally the integral,

Integral is equal to 

¿0−[ −1
i (ωtu+ω1)+λtu ]

Therefore,

¿
1

i (ωtu+ω1)+λtu

So this is the calculation of the integral and subsequently, of course, you can multiply this by

i (ωtu+ω1 )+λtu to the numerator as well as the denominator. Then you get rate of the i part and

then you will get expression in two different terms as indicated here.
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So, we have here this is the first term, this is the Fourier transformation with respect to the t1 axis

and this is the Fourier transformation with respect to the t2 axis. Now here we have written here

what is 

this relaxation factor comes in here as well and this is the amplitude. This is the amplitude after

the Fourier transformation. 

So 

Now we recall from the discussions in the very first chapter that what are these lines shapes. So

here you are plotting as a function of the frequency. If you plot this as a function of frequency

what frequency ω tu, these are the various frequencies which maybe be present in your spectrum

and this  ω1 and  ω2 are the running variables of the Fourier transformation, So for the various

frequencies that are present. 

So what you get as a line shape in your spectrum so if you plot this if you plot this as a function

of frequency, then you will see that this will actually generate a absorptive line shape and this is

 

 



the same as what we had done earlier in the case of one dimensional Fourier transformation and

this  will  generate  a  dispersive  line  shape  because  this  is  an  i  (∆ω¿¿ tu)2+(λ¿¿tu)2¿ ¿ and

similarly, this is a absorptive and dispersive components along the F1 axis and now this is on the

F2 axis you have a absorptive component and a dispersive component present. 

Now remember here we just put here ω1 ω2 that is because we use running variables ω1 and ω2

but in the frequency domain spectrum, finally, you may represent this as F1 F2 as well. There is a

running variable along the frequency axis. 

(Refer Slide Time: 29:05)

So now therefore  I  will  return  use these symbols  F1 and  F2 here so I  have here  absorptive

spectrum for the transition Atu for the coherence and a dispersive line shape for the along the F1

axis for the same coherence tu and here I have Ars F2 and -iDrs F2. This is absorptive component

and this is a dispersive component after the Fourier transformation. Now if I multiply this, if I

multiply this so what do I get? Atu Ars and this will be real because there is no i component there

and similarly this product these two terms product this give me real component again. This is

plus i square and therefore it is - Dtu Drs and the cross terms, this is - i Dtu and Ars. 

This produces an imaginary term and this one again this will also produce an imaginary term

imaginary term therefore this satisfies what we said earlier that the frequency domain spectrum

also has real part and an imaginary part. Now Atu Ars this one will now if you plot this, it would



have absorptive line shape along both dimensions and this will have a dispersive line shape along

both dimensions. 

Now, if you look at these two terms, this will have mixed line shapes. The first term here Dtu Ars,

this produces is a dispersive line shape along F1 and an absorptive line shape along F2 and this

term Atu Drs again produces a mixed phase and this is dispersive along F2 and absorptive along F1

one. So, now if you look at the real overall real part this has both the absorptive and dispersal

components.

So in principle, if you collect the entire real part, it will also have mixed line shapes. So therefore

now we have to choose what we want to have. So how do we choose it and what are the criteria?

How do you choose it. 
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Now this is clear when you make a plot of this various lines shapes. So this is a line shape, which

is absorptive along both dimensions. This is the first term that  Atu Ars and here you have the

dispersive line shape along the both the dimensions that is the Dtu and Drs that is this one here.

These both contributed the real part of the spectrum. If you collected both of these then of course

you will have a mixture of the both the line shapes and so it will be mixed phase.

Now here it is a more a complicated situation that you have absorptive line shape along one axis

and the  dispersive  line  shape  along the  other  axis.  Now,  therefore  now if  I  were  to  take  a



individually these line shapes and take their cross sections heights at various places across the

general plot, the contours this peak will look like this and if we were to take the cross sections

here at various levels, we will have a peak shape which is like this. 

It  has  0 at  the  center  and it  has  loops  going out  like  this.  That  is  the  characteristic  of  the

dispersive line shapes, Along both axes the dispersive line shape is of this type, it has 0 at the

center and it has lobes on both the other sides and therefore this has a very broad signal and the

[+,-] indicate the positive and the negative signals and here it is a combination of the two and

you have [-,-] here and this is a very ugly line shape. 

So typically we would like to have this. So typically we would like to collect only the absorptive

component of the line shape so that we have much better spectrum, much better resolution in

your two dimensional spectrum. So therefore we have to play around with the data acquisition

and Fourier transformations, so that in the end we generate a spectrum of this type which has

absorptive line shapes along both the dimensions F1 and F2. 

 So we stop here and quick recap that  we have done today is  the two dimensional  Fourier

transformation the theory of that one and we have seen how it generates various kinds of lines

shapes and how to optimize what we should do. What we need is an absorptive line shape along

both  dimensions  and  we  have  to  optimize  your  experiments  so  that  we  collect  data  in  the

appropriate manner and do a processing also in that manner so that we generate absorptive line

shapes along both to the frequency axis. So we stop here and continue with the same in the future

classes.


