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Welcome to the fourth lecture on this course on NMR spectroscopy. In the last class we looked

at the solutions of the Bloch equations, which represent the motion of the spins in the presence of

the RF field and also the main magnetic field.  We also looked at the modifications of the Bloch

equations which had to be done or which Bloch himself did, including relaxation effects. We saw

there are two kinds of relaxation times are involved, one is the so called spin lattice relaxation

which is also called longitudinal relaxation which brings the populations back to equilibrium. In

other  words,  it  brings  a  z component  of  the  magnetization  back  to  equilibrium  and  this  is

represented by the symbol capital T1.

The other relaxation time is called the transverse relaxation time and that is represented by T2. It

is also sometimes called spin-spin relaxation time. The solution of the Bloch equations were

obtained under the steady state conditions, going into the rotating frame of the RF. Why do we

go into the rotating frame because we actually observe the nuclear spin system’s motions. In the

presence of the  RF and we see to the  RF and looked at  it,  so steady state solutions can be

obtained in the rotating frame and we indicated that as u and v to represent the magnetization,

along the axis of the RF, u and v represents the orthogonal component to it.
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So we will continue from there now, the experimental setup can be designed to observe either the

u component or the v component. Under conditions of low-RF power, such that, γ2H 1
2T 1T2≪1

This  condition is  called  as  no saturation  condition,  under these conditions,  this  term can be

neglected in the expressions for u and v and they expressions will 

v=−M 0
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2
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u is given by 
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These actually represent the line shapes that we observe, if you plot this component here as a

function of the frequency omega naught because this is what we vary, the precessional frequency

is fixed depending upon the nuclear spin and the magnetic field,  RF frequency is what we can

vary.  So as we vary the  RF frequency  ω0 the  v function looks like this  okay. So this  is  an

absorption line and we generally observe this component. 



The u component goes in this manner it is so called dispersive line shape which has the positive

component and a negative component and a long tail. Typically one uses this for drawing the

NMR spectra or sometimes this is also used in cases where you want to monitor the field drift

and things  like  that,  specially  for  locking  purposes  which  we talked about  earlier  for  those

purposes dispersive line shapes are used because this is easy to see the deviation from resonance

condition  you see here under the resonance condition this  signal has the maximum and this

signal has the minimum, this is 0 here.

Any deviation in the magnetic field causes a shift along this line and therefore it produces a

certain signal for the spectrometer to correct. So that it brings a field backs to the value it should

be, but for the spectra this is a most convenient one and this has a non-zero integral but at the

integral of this line shape it is non-zero, whereas the integral of this line shape is 0.

So having said, so about the line shapes and how the NMR signals are observed, we now return

to the question of relaxation to look at it in somewhat more in detail. We go into the mechanistic

aspects. What brings about the relaxation? 
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We said there are two kinds of the relaxation, spin lattice relaxation or longitudinal relaxation T1.

What it has to do with the population changes? We said it has to do with the magnetization along

the  Z-axis or really it  has to do with the population changes between levels.  The transitions



between levels if there are transitions, the population will change and therefore, the spin system

will relax.

The second one is the transverse relaxation which is a spin-spin relaxation this has to do with the

transverse components of the magnetization, remember in the Bloch equations we had this  T2

appearing in the equations for Mx and My and this was the appearing for the equation for Mz. The

transverse  relaxation  has  to  do  with  the  loss  of  phase  coherence  between  the  spins  in  the

transverse plane.

We said if there is no phase coherence in the transverse plane there is a distribution of spins all

along in the transverse plane therefore the total cancelation of all the components therefore, at

equilibrium there is no transverse magnetization.  But if, somehow you are able to bring in a

certain coherence between the spins which are moving in the transverse plane it results in a

certain net Mx or the My component that means there is a phase coherence between the spins.

The appearance of the transverse magnetization implies,  phase coherence  between the spins.

Therefore  anything  that  causes  loss  of  this  phase  coherence,  contributes  to  the  transverse

relaxation. Now, how does this happen, how do the transitions occur and how does the phase

coherence is lost, how is the phase coherence lost?
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Let us look at the ensemble of the spins, we have lots of spins we have a particular spin and there

are many spins which are in the lattice and all of them are precessing around the magnetic field.

If this is the direction of the magnetic field, all of them are precessing in the magnetic field in the

form of a cone, like this here indicated they can represent anywhere in the surface of the cone as

indicated  by hypothesis  of random phases  we described earlier  and since each of  them is  a

magnetic moment it is a magnetic dipole. It produces its own field and this is represented by the

flux lines given here.

The flux lines go in this manner and all of these will have such kinds of flux lines, now if the

spin precesses around this cone, this flux lines also will move, so they will also move if this is

the cone here moving the flux lines are there around it so along with that all the flux lines also

will move .Which means and the flux lines meaning one this is a field right, so the field has the

therefore  a  z component  and a  transverse  component  and as  the  as  the flux  lines  move the

transverse components also keep moving they keep oscillating.

So therefore, the motion of the spins in the solution causes fluctuations in the flux lines of the

individual magnetic dipoles. Now, when there many magnetic dipoles like this there will be an

interaction between them, each one of them interacts with the other, suppose this nuclear spin

comes close here to this one, then of course this nuclear spin sees the flux lines of this and it will

experience a different magnetic field. 

Depending upon whether it is here or here or anywhere here, it sees a different magnetic field. So

the z component of the magnetic field keeps fluctuating depending upon whether this spin is here

or here or somewhere and likewise the transverse component of the magnetic  field will also

influence their transverse component of the spin here there is a fluctuating magnetic field in the

transverse component. So the interaction between these two spins is responsible for what we call

as the, is the process of that relaxation.

We will see how that happens, just for sake of magnitudes, if we consider a distance of R here,

okay. Notice this one is actually μ this is not m here, so this is a magnetic moment .The field due

to magnetic moment at a distance R, typically is in certain range 

R=
2μ

R 3



Where, μ is the magnetic moment and if the R unit dipole if we take as a unit magnetic moment

here, the field created by this magnetic moment μ at this particular site is 
2μ

R3
.

So when there is another magnetic moment here this will interaction between the two is 2μ1 . μ2

that will be the interaction. So for a proton, suppose this is a proton the field created by it at a

distance of 1 A˚, is the approximately 57 Gauss. This is not a small  number, this is a huge

number, okay. So if this spin keeps moving or this one keeps moving, the field created at the site

of this, will keep on varying in all the three dimensions all the X-axis, Y-axis and the Z-axis. So,

you are,  imagine an ensemble which all  fluctuating here in the,  in the solution so there is a

continuous  fluctuation  in  the  magnetic  fields  at  the  site  of  this  particular  nucleus  and  this

magnetic field has components along the Z-axis and  the X-axis and the Y-axis.

We call this field is a hloc field, the h local field where is along the Z-axis, the X-axis and the Y-

axis. 
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So if I were to plot the transverse component of this hloc field the x and the y components you can

take any one of those does not matter and you plot it as a function of time and what this time

represents? This represents the motions of the spins in the solution, notice that if the tumbling



spin, if the molecule has a vector like this if the it orients like this the magnetic moment still

remains like this only magnetic moment does not become like that it still remains like that only.

So therefore, the fluctuating magnetic field this cones are always in the same direction for every

particular spin,  α state or like this  β state or like this okay. Now so, if I were to plot the local

field, the transverse magnetization created at a particular site by the fluctuating positions of the

other spins then the field seen here fluctuates like this in a random manner okay.

So,  what  is  implication  of  this,  does  it  have any frequency components?  In fact,  it  has  the

frequency components any fluctuating thing can be described by certain frequencies, if there is a

time-dependent  fluctuation.  It  will  have  a  frequency  component  it  may  have  one  frequency

component, multiple frequency components, so typically one can write this as fluctuation, 

h (t )=∑
i

A icosωi t
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Let me just demonstrate this to you here, this is one particular frequency here, now to this I add

another frequency and this is the sum of the two frequencies, I add a third frequency this is the

sum of the three frequencies,  I  add a fourth frequency this  is  sum of four frequencies,  fifth

frequency sum of five, sixth one sum of six and so on.

See what we have seen here as we are adding regular frequencies with different amplitudes Ai. I

am generating a time dependent function which looks quite random. So the noise which I showed

earlier at the h(t) is the summation of all these cosine frequencies here they all look like this.

Now recall back the RF field what we had applied is actually a function like this we wrote

RF=H 1cosω0 t

 So that means here there are many RF frequencies present, in this random fluctuations of their

field components. The  hloc fluctuation creates a multiple  RF fields here, I want to write it in a

more formal way in a more general manner to analyze that, we call it as the summation of the

cosine terms which we said is basically what we call as the Fourier transform.
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The Fourier transform explicitly is written in this manner, this is the time dependent fluctuation

in the  x-y plane and then you write this Fourier transform equation here and this becomes the

frequency dependent part.

HT (ω )=∫
−T

T

h (t ) eiωtdt



So this is how you analyze what all frequencies are present in h (t). So there will be multiple

frequencies here right, so and these are also be very randomly fluctuating quite frequent positive

and negative frequencies both can be present and then, if I define the term which is called J(ω¿ ,

which is an ensemble average of all these frequency components say we take complex conjugate

here.

J (ω )= lim
T →∞

1
2T

❑

HT
¿

(ω )HT (ω)

Why do I take this? Because this itself the average will be 0, because the average of h(t) itself

can be 0 and this will be 0. But the square of this will not be 0, so why do we need to take the

square? Because, when you look at the RF, the H 1cosω0 t. When you look at the RF the H1 was

an amplitude of the particular frequency and the square of that represents the RF power.

So  likewise  here,  in  the  summation  what  we  have  Aicosωi t  in  the  previous  equation  Ai

represents the amplitude and here, the Ai represents the amplitude the square of this represents

the power. So what is implication of that, the square of the amplitude of the frequency is present

here, it represents the power distribution in the fluctuating magnetic fields. So this is therefore,

called as spectral density function.
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Spectral density means it is a distribution of power at different frequencies in the fluctuating

ensemble,  without  going into  the  mathematical  details  of  how this  actual  expression  can be

derived. We will take this test the result for this course but that will  be a quite an involved

calculation. We will take that result here and here is an ensemble average of the fluctuating fields

in the x-y plane and we have this function 

J (ω )= ❑
h¿

(t )h(t )

2 τ c

1+ω2 τc
2

τ cis a time constant called as correlation time. This actually indicates the correlation between the

spins when they are moving in the in the ensemble, is there any phase relationship between the

spins when they are moving, is there any sort of a relationship or a memory of the faith of the

spins when they are moving in the solution in the ensemble?

So this correlation time actually represents the kind of a correlation that maybe present between

two  spins  in  the  ensemble,  okay.   In  other  words  this  correlation  term  characterizes  the

fluctuations how much is the phase coherence between the spins? How much is the time between

the two molecules hitting each other colliding with each other every time there is a collision,

there can be change in the phase memory of the spin system.

And therefore  there  can  be  all  these kinds  of  contributions  to  the  fluctuations  in  the  in  the

magnetic  fields  and  that  is  characterized  by  particular  time  constant  called  as  τ c,  and  this

obviously  has  a  units  of  time  and  then,  if  you  want  to  plot  this  function  as  a  function  of

frequency it will represent a distribution like this.

Notice, and this is my RF frequency here and it can keep changing, you can have various kinds

of powers depending upon what sort of a frequency you want to consider, if you have to consider

a frequency here it has this much power if you have a frequency here it has this much power,

frequency  here  so  and  so  forth.  So,  now  I  consider  three  particular  situations  when  my

spectrometer frequency or the RF frequency is represented by ω0.
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ω0 τ c≫1 that means this  tells you , how much is the correlation time there can be a situation,

when ω0 τ c≪1  or  ω0 τ c≅1. In this plot, only one half of this curve is plotted compared to the

previous figure, here you had this half and this half on both sides of  ω0 or zero frequency or

whatever, and only this half is plotted.

Now, before we actually go into this have a look at this equation, what does this tell you, 



∫ J (ω )dω=
Kπ
2

It turns out that this is a constant, in other words the total area under the curve of the spectral

density function is constant because the integral represents the area under the curve, the total area

under the curve is a constant which means the total power available in the ensemble from the

magnetic dipoles fluctuating is constant.

Now, if you look at this curve  ω0 τ c≫1 which means compared to the spectrometer frequency τ c

is such that this product is much larger than  then the function behaves like this that means, at

certain power level this  almost  approaches zero.  All  the power is  concentrated in this  much

frequency distribution only, in this much area of frequencies on the other hand, if ω0 τ c≪1. That

means this τ c is much much less very rapid motions, very fast motions then this condition will be

dissatisfied.

Now, you will  see the  power is  distributed  over  a  whole range of  frequencies  all,  and then

eventually much higher frequencies it goes down to zero. For the intermediate case the power

lies in between these two. What is the consequence of this so, if I have to consider a transition in

my spin system, suppose the transition has a particular frequency here, then of course this much

power is available for the transition to occur for the spin system.

If this condition is satisfied, if this condition is satisfied then this much power is available. If this

condition is satisfied then at  the same frequency this  much power is available.  So therefore,

depending  upon the  amount  of  power  you apply  of  course  you will  have  a  different  signal

intensity. On the other hand, if we have a situation something like this here, if you are at this

particular frequency, whenever you are looking for ω i frequency right.

When you are looking at omega i which is at somewhere here, how much power is available at

this frequency. That is if you have a condition of this type satisfied then it is this much power

available.  If  this  condition  is  satisfied,  this  much power  is  available  but  if  this  condition  is

available, zero power is available.

So therefore, depending upon how much is the correlation time in your in your sample there can

be variations  in  the efficacy of  transition  at  your respective  frequencies.  So therefore let  us



consider a switch so, if I have more power then of course I have a transition occurring then the

relaxation will happen faster and we have a relaxation time changing. The same thing is now

indicated by this particular curve.
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If I were to plot the T1;  T1 is the relaxation time as I said which causes transitions at the given

frequencies.  Now if  I  have  ω0 τ c≫1,  then  as  a  function  of  τ c,  if  I  plot  the  T1 continuously

decreases,  here  as  the  τ c increases  and  then  it  reaches  a  minimum value  and  then  it  starts

increasing from here onwards. For  ω0 τ c≪1 it starts increasing and all this has to do with the

power that is available at a particular frequency, where you are looking at. 



This can be understood from the previous curve here, suppose I have a frequency ω iwhich is here

where I am looking for transitions. If this condition is satisfied I have practically no power here,

so that is what, it will not cause a transition at all, if it does not cause a transition then the  T1

relaxation time will be very very high because it takes a long time for the system to come back to

equilibrium .

If this condition satisfied in my spin system, then this much power is available at that particular

frequency, so accordingly, the relaxation time will be determined depending upon how much

power is available the it will determine how much time will be required for the system to come

back to equilibrium. If we look at this situation, suppose this is the situation,  when we have

ω0 τ c=1, then you have the maximum power available at that particular frequency. 

That means it will cause the fastest relaxation of the spin system. That means the T1 time will be

the smallest, in other words this indicates how the T1 time goes through a minimum and this will

be the minimum time and this will be the maximum time and this will be somewhere in between

right. So that is the indicator here, if you see here you have a time here and then it comes down

to a minimum and then it starts increasing again you go on either side of τ c of this point either

side you go the T1 increases.

T1 therefore,  goes  through  a  minimum  here  whether  it  is  ω0 τ c≫1 ,ω0 τ c≪1  it  keeps  on

increasing. Now omega naught also can change if I change the omega naught, what will be the

implication of that? The ω0 τ c=1 will be reach at a different value of τ c . 

There if I increase my  ω0 the spectrometer  frequency I make it  from 100 Megahertz to 200

Megahertz then the τ c will be accordingly,  reduced  so that this condition will be satisfied at a

lower correlation time likewise, if I take it 300 Megahertz it will come down even further, it will

be satisfied here. So therefore, what is the slow motion at one frequency can become fast motion

at another frequency and vice versa.

For example, if I am considering a situation here then this will be in the fast motion limit for the

black curve but in the slow motion limit in the blue curve. Which is the 300 Megahertz therefore,

this explains why the  T1 relaxation time depends on the spectrometer frequency. It varies with



the spectrometer frequency and one has to measure relaxation times at different frequencies to

understand about the system better.

 Now we talked about the relaxation time behaviors, how much time it will take and how does it

depends upon the spectrometer frequencies. We can go into little bit more details with regard to

the mechanisms.  Now, we said it  is  a dipole-dipole  interaction  which causes  the relaxation.

Okay, so let us continue and look at how the transitions are brought about. You remember the

expression for the transition probability, when we consider the RF induced transitions. 
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We said here  if  the  RF is  applied  along the  X-axis the interaction  between the  RF and  the

magnetic dipole causes this transition probability and we had this term here μ .H 1 or it is simply

Ix1 was there and this thing had come. Here, the perturbation that is causing the transition is the

dipole-dipole interaction between two magnetic dipoles.

So therefore here, the perturbation will be represented 

PDD∝ γ1γ2|¿m
'|Î1 . Î 2∨m ¿∨¿

2
¿

Where,  I1 and I2 represent the spins spin operators for the two spins that are interacting. If you

want expand this in more  explicit form, this will have 



PDD∝ γ1γ2|¿m
'|Î x1 . Î x2+ Î y1 . Î y2+ Î z1 . Î z2∨m¿∨¿

2
¿

In the same manner as we considered earlier we are considering transitions between m’ and m,

with some operator algebra of angular momentum theory.

We will realize that, this particular term is the one which is responsive for the transitions. This

causes  the transition  between the states  m’ and  m,  this  will  not  contribute  to the transitions

between the states m’ and m but it is these two terms which contribute to the transition between

the two states. Therefore if we ignore this,

PDD∝ γ1γ2|¿m
'|Î x1 . Î x2+ Î y1 . Î y2∨m¿∨¿

2
¿

 we will have only this part and now we do little bit more algebra with the angular momentum

operators.

m '
∨ Î x1 . Î x2+ Î y1 . Î y2+ Î z1 . Î z2∨m

This  will  be  non-zero  for  ∆m=0 ,1 ,∧2 this  is  in  contrast  to  what  we said  for  RF induced

transition where we had only one of RF and the other one was a static field here both are RF kind

of  things  and  therefore,  here  we  have  transitions  possible  even  when  the  two  states  have

∆m=0 ,1 ,∨2. Earlier in the case of  RF induced transition we had the so called selection rule

∆m=± 1.

So here also there are selection rules but different from what is RF induced transition, here you

can have 0, ±1 and ±2. We will face this situations when we consider multiple spins or spins with

the higher I values and so on so forth. So this implies that 0 and double quantum transitions will

be caused by lattice fluctuations.

Okay, now going into the Bloch equations a little bit more detail once more. Now, with respect

to the hloc field. hloc is the one which is created by the fluctuating magnetic moments or magnetic

dipoles. 
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We write that explicitly for the spin systems here, consider this magnetic moment here 

d M x

dt
=γ (h y M z−h zM y )

d M y

dt
=γ (hzM x−h x M z )

d M z

dt
=γ (h xM y−h y M x )

and it is rotating under Z-axis this will all record in the Z-axis presses around the Z-axis. The hx,

hy and  hz are the components of the  hloc.  Notice therefore there is a precession here and any

fluctuation here will cause a precessional frequency change. Any fluctuation will here cause a

change in the frequency again and that leads to the loss of phase coherence of the components of

this mu in the transverse plane. Therefore, if you look at here the Mx and the My can be μx. 

This  ∑ μ' sand now you see here you have the hy component  appearing here  hz component

appearing here, for this also hz is appearing here hx is appearing here for Mz you have only hx and

hy. Among all the three hz is the one which is a slowly varying component because there is no

frequency here.



It changes randomly as the system as the spin systems move closer or further and things like that,

but a change in the frequency shows up in the hx and the hy components. Therefore hx and hy are

rapidly  varying functions,  where  hz is  the slowly varying function.  So therefore,  the rapidly

varying components hx and hy contribute to both T1 and T2 this represents the T2 relaxation, this

represents the  T1 relaxation.  Mx,  My appear  in both all  the three components.  Therefore they

contribute  both the  T1 and  T2 whereas,  the  T1 relaxation  is  contributed  by the  hx and the  hy

components only.

Okay, now without going into the much greater details of this calculations. I will give you here

the final equations with regard to the relaxation rates. 
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R2=
1
T 2

=
γ 4h2 I (1+ I )

5 r6 (3 τ c

5 τ c

1+ω0
2 τc
2
+

2 τ c

1+4ω0
2 τ c
2 )

Now the relaxation rates are represented by R1 and R2. R1 is the inverse of T1 and R2 is the inverse

of T2. This is proportional for the spin systems I value their nuclear spin. This is the inter proton

distance or inter-nuclear distance R and this represent the spectral density distribution here.

Notice here,

R1=
1
T 1

=
2γ 4h2 I (1+ I )

5 r6 (
τc

1+ω0
2 τ c
2
+

4 τ c

1+4ω0
2 τ c
2 )

ω0
2actually represents the double quantum transition. ω0represents a single quantum transition ω0

2

represents the double quantum transition. 

Therefore for the R1 the double quantum transition probabilities also appear we are not going to

the details of this theory but we will just take it for granted, this will be discussed later on when

we talk about advanced topics later. 

R2=
1
T 2

=
γ 4h2 I (1+ I )

5 r6 (3 τ c

5 τ c

1+ω0
2 τc
2
+

2 τ c

1+4ω0
2 τ c
2 )



And here it is a single quantum transition and for the  T2 we have here a frequency dependent

term ω0τ c
2 and a frequency independent term in other words this is like a zero frequency.

So a slow motions like zero frequency if you treat they contribute to the  T2.  Rapid motions

contribute  to  the  T1,  slow  motions  contribute  to  the  T2.  Slow  motions  of  course  will  also

contribute to the T2. I mean the rapid motions also will contribute to the T2. In addition, the slow

motions and the rapid motions contribute to the T2 or the R2 value. So if we were to plot this R1

and R2. R1 is a function of  τ c, we can just simply show it in this manner.
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This is τ c. If I plot here R1 the R1 goes like this and then it decreases and the R2 goes like this and

it keeps going this is R2 and this is R1. Why does this R1 go down further and that follows from

the previous equation. If we look at this equation here it ω0 τ c≫1 >>1 here if you look at this one

here is far far less than 1, then we can ignore this condition and then it will be proportional to the

τ c. So as τ cincreases it will go on R1 goes on increasing but if this condition is such that  ω0 τ c≪1

then it almost approaches zero.

So this is consistent with our previous equation it goes through a minimum.  T1 goes through a

minimum,  then  goes  up  which  means  R1 goes  through  a  maximum  and  then  goes  down.

Whereas here, this implies that  R2  continues to increase, regardless of the omega naught tau c

condition because it is a term which is independent of  omega naught tau c and that is indicated

here with increasing tau c, R1. increases initially and then approaches 0,  then of course it is, in

between there is a maximum there is maximum which will come as indicated to you in the curve

and then approaches 0 for ω0 τ c≪1  and while R2 increases monotonically this typically happens,

when the motions are extremely slow.

When the motions are very slow there will be three contributions to it, one is the fluctuating the

magnetic power that is available will be different and if the extremely slow then it is different

frequencies superimpose different lines superimpose resulting in the line broadening and that is

called inhomogeneous line broadening that contributes the large line widths and this typically is

observed in case of solid state NMR and also in systems of very large molecular weights.
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Okay,  so  the  final  topic  though  when  the  experiment  is  optimized  with  no  saturation  the

maximum obtainable signal intensity is proportional to 

N ( I+1 )μω0
2

Notice it is not just proportional to the ω0 the field it is proportional to the square of the magnetic

field or the square of the frequency. Under the conditions of  T1 and  T2 being nearly the same.

This is seen from the curve which  I indicated there for low τ c ' s. For very low τ c ' s T1 and  T2

curves are actually overlapping and in terms of the field it is given by 

N (I+1)μ3H 0
2

I2

However this does not include the noise which is contributing typically one does not see the

square dependence  one sees a  
3
2

 dependence  because the noise goes as the square root and

therefore you typically see a 
3
2

  dependence on the magnetic field. 

And here is, are some calculations to show what are the relate to sensitivities of the different

nuclei. 
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See, the proton has the maximum sensitivity it is 100 percent. If relative resonance frequency is

100 then the relative sensitivity of this one is taken as one with respect to this we put down here

the relative sensitivities of different nuclei. Deuterium is just 0096, carbon 13 is 0159 and this is

Nitrogen 15 is 0.001, Fluorine 19 is 0.326, Phosphorus 31 is 0.0663. So after proton the one

which is most sensitive is fluorine 19 and after that you have the other nuclei typically, we come

across protons the carbons and the nitrogen 15. 

Notice here the number of spins is treated to be is considered to be the same. Natural abundance

is not included in this, this is the relate to sense it is simply, based on the μ, μ3 you remembered

and this is one the gyromagnetic ratio of proton and carbon 13 is 1 by 4. So the 4 to the power

cube is  64,  therefore  this  is  nearly  1 by 64 of  this.  Now if  we want  to  include  the natural

abundance  of  this,  then  you  got  what  is  called  absolute  sensitivity.  Absolute  sensitivity  is

proportional to the product of natural abundance and relative sensitivity.

Therefore this goes down quite substantially and that is why often one says, the NMR technique

while it is so elegant, it is also a very insensitive technique and you require large amounts of

samples for recording quality NMR spectra. So with that we come to a close and this chapter we

close here. This concludes the first chapter of NMR spectroscopy which has to do with the basic



concepts and then we go all on analyzing the details of the NMR spectra in the other lectures.

Thank you.  


