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Lecture 36 
Time evolution of basis operators 

So let us continue the discussion of the evolution of the basis operators when we will consider

various kind of pulse sequences. So we have to know how the individual basis operators evolve

under the influence of the Hamiltonians. Basically there are two components of the Hamiltonian

we are dealing with. There will be a Zeeman Hamiltonian and the coupling Hamiltonian and last

class we looked at the evolution of a particular base operator: base operator Ikx under the influence

of the chemical shift Hamiltonian. Today we will discuss the evolution of that same operator  Ikx

under the influence of the scalar coupling Hamiltonian. So to remind you as to what is the scalar

coupling Hamiltonian. Let me just write here.
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The scalar coupling Hamiltonian is written as

H J=2π J kl I kx I lze
−i H J t I kxe

i H J t

 J kl is the coupling constant between two spins k and l and we have this operator Ikz and Ilz. So this

is the for the to spin case this is the coupling Hamiltonian. So for the evolution what we need to



calculate is we have to calculate  e−i H J t. 

And we're using the same bases operators ei H J t. If explicitly write here, so I have this Bs” so this

is the operator that we get as a result of basis evolution. Here we have 

Now this individual operator can be expanded or written in a simpler form like this: 

This can be proved along the same lines as we derived the expressions for e Ibx for example. When

we took the expressions for or e to the let me write here so we will write here e−iβ I kz. So we wrote

in a particular  manner here  cos
β
2
−sin

β
2

 and things like that.  So this  was  x here.  If you are

applying it for pulse, this was x here βis a flip angle then we wrote this is

 ¿ cos
β
2
−2 I sin

β
2
I x

So that was how it was written. So in the same manner we right this here except we make note of

the fact that Ikz Ilz can be written as in terms of poly-spin matrices 
1
4
σ kzσ lz. So this will help us in

deriving this equation. And polyspin matrices satisfied this condition this σ kz
2
=σ lz

2
=1. So this is

the property which you should remember and we can prove this equation.

So therefore I  am not going to  explicitly  prove this.  This  can be a kind of an exercise for

students who can practice this and prove this equation. So we will actually use this equation as it

is and calculate the evolution of the kx operator under the influence of this. So in this place we

will have to put this and on this place what we shall do, Ikx and this will be a plus sign. Then you

write for i2π J kl Ikz I lz t  then this will be the same as this except we will have a plus sign here.

 

 



And then you do the multiplication of this part Ikx and the other part which is with the plus sign.

Then  you  arrive  at  this  equation  Ikx cosπ J kl t+2 I ky I lz sin π J kl t.  So  this  will  be  the  kind  of

equation that will come. You notice here that  Ikx has evolved into a in phase Ikx turn and it has

generated what we make call as your anti phase term. It is k magnetization which is anti phase

with respect to the spin l.

You  remember  earlier  we  have  discussed  what  this  individual  what  these  basis  operators

represent.  Therefore  here  we  have  said  under  the  influence  of  coupling  Hamiltonian  the  Ikx

operator will be e into this  Ikx cosπ J kl t+2 I ky I lz sin π J kl t. So this is the anti phase term. So such

evolutions will keep happening and we will look at them as we go along. 
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Now  similarly  you  can  calculate  for  the  basis  operator  Iky evolution  under  the  Zeeman

Hamiltonian. This is the chemical shift Hamiltonian and the coupling Hamiltonian  H J  and they

can be represented in this manner. We will not prove this, basically they can be derived in the

same manner and we will just write it down here and we will use them later. So the 

 



So because here we have considered the evolution have the kx operator.

So the  ky operator  ky operator evolves with  Iky here and  – sinωk t I ky.  Similarly,  the coupling

Hamiltonian generates this sort of evolution. 

Similarly, in this case also even when you had Ikx evolution it was 

Therefore, this indicates in some way a kind of a rotation in the transverse plane and you can

pictorially represent them very soon. I have already indicated this to you in the evolution shifts

early that such kind of a representation can be used for calculating the evolutions of any of this

operators.

Whether it is Iky or Ikx , -Iky or -Ikx and things like that. Now similarly we can do this exercise for the

basis  operator  2Ikx Ilz.  Evolution  under  the  HZ and  H J .  Now  HZ  works  on  individual  spins

therefore if I consider 2Ikx Ilz, which is the transverse term here. The transverse term is Ikx therefore

chemical shift evolution will happen only for Ikx part.  Ilz part will not contribute to the chemical

shift evolution therefore if I consider the Bs’ here.

So even if it is in this form the two product operator the chemical shift works on the individual

operator because we have the Ilz here and Ilz coming here Ikx evolves in the usual way as it is for

the individual single spin. Now the coupling Hamiltonian that causes this sort of a transformation

here it gives you cos π J kl t 2 Ikz I lz .

So the antiphase term which remains as amplitude modulated by this expression  cos π J kl tand

you  generate  hereIky sin π J kl t.  Notice  here  that  when  you  consider  Iky rotation  you  got

 

 

 



Iky cosπ J kl t−sin π J kl t . Now you are considering this you are generating the same term once

more. So this appears in the positive sign then you have plus sin π J kl t Iky.

So this indicates you that this kind of terms form some sort of a group. They transform within

themselves. The Hamiltonian here is Ikz and Ilz and, the basis operator is 2 Ikx Ilz and we have also

another basis operator 2 Iky. So 2 Ikz Ilz, 2Ikx Ilz and Iky they somehow form a kind of a group and

similarly for the Ikx as well. 
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This can be represented in a pictorial manner like this. So similarly I can write this same kind of

expressions for 2Iky Ilz under the influence of HZ and H J . So Bs’ gives me the same here evolution

of  Iky as individual chemical shift  evolution and  Ilz remains here. And  Bs”  which is a result of

evolution under coupling we had cos π J kl t 2 Iky I lz same here and it generates the Ikx term. So as I

said these indicate some sort of rotation in a particular plane.

Pictorially we can represent it like this. So we put the Hamiltonian this is from the coupling

similarly we wrote earlier for the chemical shift so the coupling Hamiltonian is written from this

axis here. So Ikz Ilz this is the coupling Hamiltonian and if I take the particular base operator Ikx.

Here then  it  under  the  influence  of  this  rotation  evolution  under  this  the  circle  indicate  the

evolution under this Hamiltonian. 



It generally rotates in this manner so you get rotates like this you generate components of Ikx and

2Iky Ilz. Suppose it has rotated up till here then you generate the Ikx cosπ J kl τ  and Iky Ilz sin π J kl τ I kx.

And if you were to continue this rotation under the influence of the same Hamiltonian like this so

what you will get. So this vector has moved over here so you get Iky I ly cosπ Jkl τ as it is.

Suppose it has moved until this once you draw a vector as well here. If I wish to draw vector here

so then if this rotation has happened for a particular angle this angle and this will be the pie Jkl

tau. You will write the cos π J kl τ . So if this isπ J kl τ  here then you will have  2 I ky I ly cos π J kl τ  and

this component will be −Ikx sin π J kl t. So and similarly if you continue this if you were to start

here your you will move here.

If you want to study you will move here and things like that. Therefore, these actually transform

within  themselves.  These  Ikx, 2IkyIlz and  Ikz Ilk.  This  form  a  group  which  transform  within

themselves. Go from here to here, you get this and this you can go from here to here again you

get this and this under the influence of the same Hamiltonian. So if I were to write in the similar

manner here 2Ikx Ilz. So I get here Ikx Ikz going to Iky and Iky going to -Iky Ilz here.

And so and this continues to generate this portion here and the  -Iky here. So like that. So this

whole set of operators which are represent here 2 Ikx Ilz Iky and this coupling operator here this Ikz

Ilz. These form kind of a rotation group. When I said group they transform themselves so under

the influence of one thing the one operator transforms into the other. So that is the meaning of

the  rotation  group.  So  this  is  a  very,  these  are  the  very  useful  operations  calculating  the

evolution of any density operator as we get along. 
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Now that is so much for the evolution of the basis operators. So though the illustrative examples

which I gave you but there will be; we have to do this exercise for every other rotation basis

operators.  This  will  be  this  can  be  easily  done  because  we already  indicated  what  sort  of

principles are involved what sort of rotation groups are formed and therefore it is easy to write

down the expressions for all of those.

Now we turn to the evolution under the influence of pulses. What do the pulses so? And we have

seen earlier the particular basis operator gets transformed by this sort of a transformation. If this

represents  rotation,  this  represents  pulse  here  and  this  is  a  basis  operator.  This  is  the  pulse

P1 ρP1
−1 and the pulse can be applied along  X  or the  Y axis and therefore I write here  Rq the

rotation operator Rq and Rq - 1.

So these represent pulses and q can be x or y. Now let us actually calculate the influence of this

on some basis operators. We take as an illustration, Bs=I z. This is the simplest all of those and

for a 90 degree x pulse the transformation will be, we have to write the individual matrices for

this pulses. We have here suppose we have here  Rx, suppose we apply it along X axis at 90x

pulse.

 



Therefore, this is 

So one can calculate inverse of this matrix, take a product of this matrix and this matrix you will

get 1.

So that indicates that this is the inverse of this. Now when you all this multiplications you will

get ½  0 i -i 0. And this is equal to -Iy. So what this has told us that 90 degree x pulse rotates the

Iz into -Iy. So this is also what we have said earlier in discussion with the derivation of the pulses

and that was we can write is, so this is the X, Y, Z and if I have a vector here; Iz here, this gets

transformed into -Y. So it goes here X Y Z goes into -Y gets rotated here to -Iy. Iz goes to -Iy. If I

apply a pulse along the X axis. So that is the calculation what we got from this 90 degree x pulse. 
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So Iz operator, 90x this indicated in the figure here. This figure is already there. So if I here write

rotation  around  X this  is  the  Y  this  is  the  Z.  So  rotation  operator  is  along  this  Ix and  Z

magnetization is rotated into the -Iy.

So from the same, we could also see what if your magnetization was along the -Z axis, it will go

to Y. If it were along the Y axis it will go to +Z. So if you are considering this initial operator here

as Iy then you can imagine that this Iy will go to Iz. We said Iz will come to -Iy. This is what we had

in the explicit calculation. Now if you were to start with Iy, the same rotation will take  Iy to  Iz.

And Ix will of course be invariant nothing will happen we will show that explicitly show that also

and if you were to have -Iy then - Iy will go to -Iz under the influence of this rotation. 
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Now that is explicitly calculated here, if Bs=I z then what I have to say here 

So this is the same which told you before that under the same rotation the  Iy is going to  Iz. So

therefore  these  again  form the  rotation  groups  X, Y  and  Z these form rotation  groups.  They

transform within themselves, if there is in sign that is not considered different. It is the same

rotation group.

Except that the coefficient will be different. So this rotates Y into Z, rotates Z into -Y and Z rotates

-Y into -Z and so on. So this forms a rotation group. You remember if I had the rotation around

the Z axis; rotation around the Z axis  is what that is a chemical shift evolution. When I had the

chemical  shift  evolution my operator  going from here to here.  Ix was going a part  of it  was

rotating in this plane X to Y, Y to - X, -X to -Y and so on so forth. 

Therefore, these three operators from a rotation group and one of them can be the basis operator

 



other one can be your Hamiltonian. In this case operator is the Ix, the rotation is around this axis

therefore  and we have  the  basis  operator  is  Iz or  Iy.  In  the  chemical  shift  case this  was the

Hamiltonian and this was the operator and the basis was here and therefore one could go from Ix

to  Iy and  -Iy to  Ix and  so  on  so  forth.  So  this  is  the  way  we  can  look  at  all  of  this  in  a

comprehensive manner. So thus Iy goes to Iz.
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So for a y pulse, earlier I wrote as  x pulse. So what does the y pulse do?  y pulse take this

rotation here; you can do the same calculation here. So it goes Iz goes to Ix. Notice you have a

left handed rotation here Iz will go to Ix and Ix will go to - Iz and -Iz will go minus Ix and so on.

So this is the way describe the rotation groups. Rotation under the influence of various pulses. 
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Now what about  Ix itself? Suppose your base operator is  Ix and apply a 90 degree  x pulse.

Intuitively you would think that nothing happened to it but let us also prove it. So we put 

So therefore, the Ix is invariant under Rx pulse. So that is intuitively one would have imagined

that.  You have  put  the  magnetization  along the  same axis  and you are  applying  rotation

around that axis and you should not move the principle.
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Now let us consider multi spin basis operators. So far we looked at the individual spin operators

and we now turn to multi spin operators. The effects of pulses can be applied on individual

spins. Now the pulses can be applied on all the screens for or an individual spin.

So the effects will be different. Now here we consider the case we consider the, this operator 2Ikx

Ilz and we have seen this operator represents the k magnetization which is anti phase with respect

to  l.  This  is  the  single  quantum  coherence  because  this  is  kx,  kx  lz is  the  single  quantum

coherence x magnetization of k anti phase with respect to l. Now we apply a pulse on both the

spins anti x (k) plus 90x(l).

So this is called as a non selective pulse. This is applied to both spins  k and  l. So now what

happens when I apply  kx pulse nothing happens to  kx because we said this is invariant the  x

magnetization invariant under the  x pulse. Therefore, nothing happens to the  kx operator. And

what happens to lz? Now lz goes to -ly. This is calculated. Z goes to minus y so therefore x pulse

on l spin take this Ilz to -Ily. Therefore, I get here -2IkxIly.



So what is this? Now here we got a mixture of double quantum zero quantum coherence. This

we had explicitly calculated earlier that this represents a mixture of double quantum and zero

quantum coherence. So what we have done here is by applying nonselective 90 degree pulse on

anti phase magnetization of one spin we have converted that into a mixture of double quantum

and zero quantum coherences. So these are called as coherence transfers and various types of

experiments will make use of such kind of transformation.
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Suppose I take the same operator here now apply a pulse not 90x pulse but I apply 90y pulse; 90y

pulse on both the phase. So if I take x what happens to x? So you have to recall when I apply y

pulse what happens to x? So at 90y on lz will take me to lx and this will take me to minus 2Ikz. So

you have to go back and look at what happens when I apply y pulse on X magnetization. Let us go

back and look at this. So this will be easier to follow if you do that.

So looking at here, so the what happens here apply y pulse on X magnetization, it will go to -Z.

And y pulse on z will take on to x. So therefore this apply here. So this will go to -Z, lz goes to lx.

Therefore, I get here minus  2Ikz Ilx. Now notice here just phase change of the pulse has made a

huge difference in the transformation. This was antiphase magnetization of k spin with respect to

spin in l. And what we have here? This is X magnetization of l spin anti phase with respect to the

k spin.

Now this is single quantum coherent. This was single quantum coherent this was single quantum

this is also single quantum. When we apply the 90x pulse we get got double quantum here from

this basis operator. Now when you apply y pulse to the same basis operator I get a single quantum

coherence of the  l spin. So this is a different kind of a coherence transfer. Single quantum to

single quantum to one spin to one spin which are coupled from k spin to l spin get a transfer and

this is a single quantum to a single quantum coherence.

Just by changing a phase of this 90 degree pulse. So in the earlier case when the 90 degree pulse

was along the Y-axis applied to both the spins so I got a single quantum coherence into a mixture

of double quantum and zero quantum coherence. And so this this is an important implications. So

this represents conversion of anti phase x magnetization of k spin into antiphase X magnetization

of l spin. That is the single quantum coherence term.

Now suppose I apply the again once again with the same operator base operator here. But I

apply a pulse only on k spin for example. I will not apply along the l spin at all. That means I

apply selective pulse a selective 90 degree pulse on one spin only. I applied to only the k spin.

So therefore the l spin remains unaffected because I have not applied any pulse onto them and

kx takes me to the -kz. Therefore, this will go to 2Ikx Ilz takes me to -2Ikz Ilz.

So it is a completely different transformation. Now this anti-phase magnetization has now got



transformed into zz order. zz order has to do with the order of the populations in the 2 states αα

state and the ββstate as we had discussed earlier. So this antiphase magnetization of the k spin is

getting transformed into a  zz order simply by changing what kind of pulses we apply. We get

different kinds of transformations of the basis operators.
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So now if I apply on the other hand the same basis operator once more here but I apply a pulse

selective pulse carefully on the l spin not on the k spin. Earlier when I applied on the k spin I got

zz order. So now I applied only on the y spin so what I get here. kx remains kx because no pulse

applied and  lz takes me to  lx to  Ikx Ilx.  Now this is  the mixture of double quantum  and  zero

quantum coherences. So therefore you see once again how a single quantum is converted into

double quantum plus zero quantum coherence by changing the kinds of pulses we apply.

So you notice therefore that a combination of different kinds of pulses with different cases can

really be used to create a whole lot of transformations in your density operator and all of these

when we will use when you actually calculate various pulse sequences and that will be coming

important will be easy to calculate in a simple operator form product operator form. So similarly

here 2Iky Ilz, so far I was looking at 2Ikx Ilz and we can calculate similarly for 2Iky Ilz.

So if I start with 2Iky Ilz apply a non selective pulse x both k and l spin along the X axis then I get

this  into  2Ikz Ily this  is  now  the  l magnetization  antiphase  with  respect  to  k.  This  was  k



magnetization antiphase with respect to l and this is l magnetization antiphase with respect to k.

So single quantum to single quantum coherence transfer. So these are important results which

we will play a very major role in how we calculate the evolution of the density operator through

the sequences.

So this is referred to as coherence transfer of spin k to spin l. In general, It is seen in application

of RF pulses to antiphase magnetization in multi spin systems causes coherence transfer among

the spins. This forms the basis of many multiples experiments in homo and heteronuclear multi

spin systems. 
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So here is a summary of all of these revolutions what we have indicated here.  Once  again as a

recap so because this will be extremely useful and we have to remember this very well remember

this by heart. Which operator turns which bases operator into what? So which Hamiltonian coverts

what basis operator into what basis operator? So we will have to see all of this. If this is chemical

shift evolution your Hamiltonian has the Iz operator here therefore we are writing this manner and

your basis operators are Ix and Iy. Therefore,  Ix rotates into the Iy and Iy rotates into -Ix. -Ix rotates

into -Iy and so on so forth. So all transformations happen here. These form rotation group all these

3 operators form a rotation group. 
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The  scalar  coupling  evolution  once  again  the  same  thing  is  repeated  for  the  benefit  of

consolidation. So you have this the Hamiltonian is 2Ikz Ilz we put it along the Z axis. This is my axis

this is my axis. So this axis is  2Ikx 2Ilz and Ikx is rotated into mixture of Ikx and IkyIlz and the same

Hamiltonian rotates the basis operator 2Iky Ilz into mixture of 2Ikz and -Ikx.

 

So you to where to start from -Ikx , I will get -Ikx plus cosine component will be -Ikx and I will get

here minus 2Iky Ilz. Now if I want to put here the antiphase magnetization here it was starting from

the  in  phase  magnetization.  This  is  how they  transformed  if  I  start  with  2IkxIlz  this  antiphase

magnetization and this operator remains the same  2Ikz Ilz this rotates into  Iky. So this will be the

cosine component will be 2Ikx Ilz.

The sine component will be Iky. So if I consider rotation for there, Iky rotates into minus 2Ikx Ilz but it

remains as Iky. The cosine part Ikl τ will be Iky and the sine will be - 2Ikl Ilz  −2 I kx I lx sin π k1 τ . So this

is the way rotation happens the when you wrote here this is the rotation is happening depending

upon the value of tau your vector will be somewhere here or here or here wherever. So if it is equal

to 
π
2

. 

If τ is such that this whole rotation is 
π
2

. Then you will go entirely from here to here. If it is not 
π
2

,



if it is this whole thing is equal to 30 degrees or 40 Degrees or something then your vector will be

somewhere here so you will have cosine component and a sine component. Similarly, here if you

rotate in an angle 
π
2

 to that depends upon the value of your τ then this goes completely into this but

if it is less than that the vector can be somewhere here then and you will have a cosine component

here and then sine component. So this is the way we actually calculate the evolutions under the

influences of various Hamiltonians. 
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So about the rotation by pulses. So if I have x pulse then Iz rotates into -Iy. Notice here we consider

a 90 degree pulse which goes into this. But if you extend this argument to you say a well I don't

want to apply the 90 degree pulse. Suppose I apply 45 degree pulse what happens? It is not very

easy to imagine here. Now we understood the principles how the rotations are happening.

If I were to rotate by 45 degrees then the rotation will take the vector from here to here. So this

angle will be 45 degrees so I will have a component  Iz and a component  Iy -Iy. So show if any

angle can be chosen. So if I have a 90 degree pulse it takes me to -Iy but if I have a β pulse then I

will have cosine beta component for the Iz and the sin beta component for the -Iy. So similarly if I

apply this pulse to the Iy magnetization goes for a 90 degree pulse it will go here but suppose I

were to apply I pulse which is not 90 degree, somewhere like 45 degree for something like 30



degree.

Then  I  will  rotate  it  only  up  till  here  then  I  will  have  a  cosine  component  here  and sine

component here. Similarly, if I were to take rotation around the y axis pulse along the y axis the

rotations will happen like this: Iz goes to Ix, Ix goes to -Iz, -Iz goes to -Ix and again -Ix will take

you to Iz. Once again the same arguments applied with regard to the flip angle. Instead of a 90

degree flip angle is you use a different flip angle you will get different components of on the Y

and the Z axis. So with that we will stop here and we will continue the discussions in the next

class.


