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Product Operator Formalism Continued
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So, we have been discussing about the product operator formalism of the density operator

which you wrote like this ρ=∑ bs {Bs }  then we looked at the various basis operators, these

ones. For one spin, for one spin we had a set of basis operators there were 4, for two spins

their   basis operators number were 16, for three spins then we have a number is 64, this is 4

to the power whatever that is, so this 41 ,42 ,43. 

And we also had said that these are all products of angular momentum operators and we also

saw what these individual operators represent in the density matrix, where do they represent,

we have various kinds of single operators and we also have operators like this which are

products of two angular momentum operators and we will also have products of 3 angular

momentum operators, Ilx, Ilz, Imz and so on so forth. 

So, these are some illustrations and we saw exactly what these individual,  some of these

individual operators represent for the one spin, two spin cases. Basically, we looked at those

which are representing in phase magnetization of single spin and also for two spins. 



We looked at in phase magnetization in all the three cases of one spin, two spin, three spin

cases. We also looked at the products of this type that Ikx, Ily, how they represent a mixture of

double quantum and zero quantum coherences and by combination of more than 1 of such

operators, we can generate pure double quantum coherence or pure zero quantum coherence. 

So and we these ones therefore, they are present in the density operator looking at the density

operator and looking at these ones we can make an interpretation of what is the system, how

the system is evolving, through the pulse sequence what kind of coherences are generated

through the pulse sequence. 

This is the physical meaning of those, calculation of the time revolution we will come to it

very soon. So, continuing with this discussion, what sort of spectra we expect for the anti-

phase magnetization in the three spin case that is what we are going to see.
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So, now we consider the three spin example. So, the three spin example we will represent it

as k l m all the three are weakly coupled spins and we saw earlier in the three spin case also

for operators like Ikx, Ilx, Imx, what sort of transitions are occurring how do we represent this

transitions in the three pin system. Let us do recap on the energy level diagram of the three

spins case ones more. We have 8 energy levels here and these are represented as 1, 2, 3, 4, 5,

6, 7, 8 essentially it is a duplication of the two spin case.
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And in one of these four energy levels, you have the third spin, m spin as in the alpha state

here and you see here this is all m spin is in the α  state and here in these four energy levels,

the m spin is in the β state, so that is how we generate the eight energy levels. 

And the transitions accordingly are as  k transitions and l transitions and m transitions. The

ones which we connect from this group to this group are all the m transitions, the ones which

are in this group they are basically the k and l transitions and that is indicated here. So, they

are indicated by different colors here, so and therefore we can understand what these ones

represents.

The arrows indicate what sort of spectra you will get when you actually measure the spectra

of the three spin system and we have seen therefore in the earlier cases that we have in phase

magnetization of the k spin if one is trying to see, then we will have four lines which are in

phase and if we have similarly for the l spin and similarly for m spin. 

So, now we are going to see, if I have an term of this type in the basis operator. For the three

spin case, remember for the three spin case also we have 64 operators, 64 operators will

consist  of  single  angular  momentum  operators,  the  products  of  two  angular  momentum

operators and products of three angular momentum operators.

Now, we are going to consider a two spin product for a three spin system and this is the

operator like 2IkxIlz in the three spin system. What does it represent? So, it will be very similar

to what we had in the two spin case itself that we will have these two transitions, there is one

transition this is a k transition, α k is going to β k this is a k transition. 



And correspondingly this is the k transition α k to β k but now you see the arrows, in this case

the arrow is like this and in this case the arrow is like this. So, this represents an anti-phase

term.  These  two  terms  will  have  opposite  signs  and  that  is  indicated  by  gain  of  a

representation here. 

If 1 3 is positive then the 2 4 transition is negative and that will be in this block. The same

thing will happen in this block as well 5 7 and 6 8 will also have opposite signs, if this is 5 7

is positive, 6 8 will be negative. So, therefore you have here 5 7 transition and 6 8 transition.

The separation between these two will be the coupling constant between the spins k and. The

same thing is  here,  of course the separation between these two or  these two will  be the

coupling constant of the spin k with spin m.

So, you have therefore a doublet of a doublet and you can see here the anti-phase nature is for

the coupling of k and l, whereas if you look at these two peaks which arise as result of the

coupling between k and m they are in phase. So, therefore with respect to the m spin these are

in-phase, these whole doublet is, has the same sign as this doublet. 

This is negative or positive and this is negative. The same sign pattern here for this one and

this one. So, therefore we called this as the k magnetization which is anti-phase with respect

to l but in-phase with respect m. Let me repeat that again here, so we have here four lines, the

four lines come as a result of coupling between k to l and k to m. 

And we can represent here the same in a slightly different notation, I can write that here

itself, so let say I have one line for the k spin in the absence of any coupling, then I will have

here two lines as a result of coupling Jkl and let me represent this as ± because I get because

of the k in this system, we will have 1 3 transition and 2 4 transitions are have the opposite

signs.

Now, there is a km coupling subsequently. So, km coupling results to splitting like this then

we will have situation like this, then we will have this one we called it as [+,+] here and [- -]

here and this is km coupling. So, in this case I have assumed that kl coupling is larger than km

coupling. 

But you can also have a situation where km coupling is larger than the kl coupling, so in that

case what one could also do is we have this here then we have these two as the result of the kl

coupling and then we will have the splitting again due to the km coupling, then we will have

this sort of a situation. 



So, these then will be [+ -], this will be [+ -] because this is [+ -], this splits into two when

then it will give to the [- -] here and this + splits into two then we get [+ +] here. So, this is

the kind of the situation what you are saying in this diagram. 

So, this is what you are saying in this diagram, we have these two transitions are shown here

as [+ -] that is this situation and this is [+ -] and + whatever that is you may call this [+ -] or

vise versa does not matter.

So, you get different kinds of atoms depending upon the relative magnitudes of the coupling

constants. So, here we have assumed the km coupling is a larger than the kl coupling. The kl

coupling is resulting in this kind of anti-phase peaks which are positive and negative here and

this is anti-phase peaks and this peaks are in-phase because this is due to the km coupling if

this is positive positive or negative negative and this is negative negative or positive positive

correspondingly. 

So, therefore this is the way you get for the kx lz in a three spin system. If you were to take ky

lz in the similar situation you will get the same sort of pattern in both this cases but they will

have the dispersive line shape because of the  ky term,  if  I  take a  ky term it  will  have a

dispersive line shape. So, similarly for if I were to take ly mz or my lz so accordingly one will

have such kind of patterns in the individual multiplets of the l and the m spins. So, this is an

illustration to show how the different transitions appear in your spectrum.
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Now, let  us consider a further extension of this,  we will  consider three spin product.   A

particular example I have taken here is the three spin product  Ikx Imz Ilz, 4  Ikx, Ilz, Imz. Notice

here, the transverse is only for the k whereas the l and the m spins are along the Z axis. 

Therefore, this ones, this term obviously represents the k magnetization, because whatever is

in the transverse plane is what we observe and we called that it represents that magnetization.

So, this is the k magnetization. Now, we can intuitively we can think that this is something

that is anti-phase with respect to both the l spin as well as the m spin. 

So, what do you expect here, so in this situation earlier this group was had the same sign as

this group, if this is negative positive this is also negative positive that is because we had in

phase character with respect to the m spin.

Now, the  k magnetization  in  this  situation  will  be anti-phase with  respect  to  m as  well.

Therefore, the first anti-phase term appears because of this, the kl splitting and secondly this

whole term is inverted because of the anti-phase nature with respect to the m spin, therefore

this now which was negative here, now becomes positive and this one becomes negative. 

Therefore, you get a pattern here this is negative, positive, positive, negative. The coupling

constant here is of course this is the kl coupling and from here to here that remains the km

coupling.  Now, we see, if you look at the splitting due to the km it is one line here another

line here. 

Now, these two are having opposite signs with respect to each other and therefore this is anti-

phase with respect  to the  km splitting  as well.  So,  it  is  anti-phase with respect  to  the  kl

splitting,  this  is negative positive  kl splitting,  it  is  also anti-phase with respect to the  km

splitting if this is negative and this is positive. Similarly, this and this have opposite sign,

therefore we called this as anti-phase magnetization of  k with respect to both  l and the  m

spins.

So, in the diagram here you can also see, if I take this as a positive direction here this as a

negative direction here and then correspondingly I will have this as negative direction here

and this has a positive direction here. The same thing is represented schematically this is the

schematic representation of how the peaks will appear in your spectrum when we record,

when your density operator contains this sort of a term. 

This sort of a term is a basis operator present in our density operator then if you were to

measure  this  then  you  will  get  spectrum which  will  produce  a  spectrum like  this.  This



particular term of course where as other terms will produce different kind of spectra. So, we

are interpreting  how, what  are the contributions  of the individual  basis  operators in  your

NMR spectrum.

So, therefore so much for the physical meanings of the individual basis operators, what do

they represent in your NMR spectrum? But now we come to the next objective that is we

must be able to calculate the evolution of the density operator consisting of all of this basis

operators through the pulse sequence. 
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I again repeat this slide here, this slide you have already seen before, this is the multi-pulse

experiment with so many pulses and the system is evolve with the time starts with the time 0,

we have this pulse here and H 1 τ 1 tau1 pulse here then evolution under free precession for the

Hamiltonian H 2 τ 2, then P3 H 3 τ3, P4 and so on so forth. 

So, for free evolution we have to calculate the evolution under the Hamiltonian this is for

these ones and then for the pulses we have this evolution under the pulses P1 ρP1
−1and ρhere

can be a summation of all the basis operators and this is the same equation what we had

earlier  start  with  ρ (0) keep  applying  the  pulses  and  the  evolution  under  the  various

Hamiltonians as we have discussed before.
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So, now we explicitly put this basis operators here for the free evolution, I called this as 

and for the pulses we called it as 

The basis operator set for the single spin, we have this expression when all the multiple spins

are also constructed from this individual angular momentum operators as I mentioned before.

(Refer Slide Time: 16:05)

 

 



Now,  let  us  go  further  and  try  and  calculate  the  evolution  under  the  Hamiltonian  and

evolution under the pulses. What happens when you apply the pulses, what happens when the

density operator evolves under the Hamiltonians.  Now, let  us write the Hamiltonian ones

more here explicitly we will write the isotropic Hamiltonian for weakly coupled spin systems

in liquids consist of two terms and this is the Zeeman term where it is due to the interaction

between the nuclear magnetic moments and the magnetic field and this is represented as 

the k is the index which goes over the various spins. 

So, we can write as kz or zk does not matter, earlier we have used kz here but does not matter,

it means the same thing we are referring to the same thing. This is the precessional frequency

of the case spin and this is the coupling constant term, where we have  Jkl is the coupling

constant and the operator term for the interaction is Izk Izl or you may call it as Ikz Ilz, so it is the

same thing just indices are changed here. 

So, we could have written as Ikz Ilz as well same thing. And in briefly we write it as

This is the complete Hamiltonian this is the Zeeman Hamiltonian, the first term represents the

chemical shifts and the second term represents the scalar couplings.
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For evolution of a basis operator Bs obviously, we can write this Bs prime this for the rho

prime I write it as 

This is the very simple extension of the previous equation. 

For  now I write explicitly ℌ

 

 



So, basically putting for  here summation sum of the Zeeman and the coupling terms. Now,ℌ

for  the weakly couple spin system you remember  what  the Hamiltonian  consisted of,  so

Hamiltonian consisted of Ikz term here and kz lz here. 

So,  these  are  all  z components,  the  z components  therefore  this  part  of  the  Hamiltonian

commutes with this Hamiltonian because kz operator, the z operators they all commute and

they all belongs to the same spin. So, therefore these two will commute. So, when e do that

then of course we can actually calculate the evolutions of this operators separately without

affecting the result in any manner.

So, if I were to write explicitly this, I can write this (H ¿¿Z+H J)t ¿ (H ¿¿ J+H Z)t ¿ does not

matter because it only means there is an order of the order of the calculation is going to be

interchanged. So, here I keep the same  (H ¿¿Z+H J)¿, this is  (H ¿¿Z+H J)¿and this part I

turn it in the reverse manner, I write it as (H ¿¿Z+H J)¿. 

What is the consequence of this? For the 

The central term will represent chemical shift evolution. 

So, let me write that explicitly here, so we write it as Bs  e−i H Zt ei H Z t and then here it is e−i H J t

and ei H J t. So, this particular term here, this is the chemical shift evolution and from here to

here this after that this will be the J evolution, so we will first calculate what is the chemical

shift evolution of a particular basis operator Bs.
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So, for this we take an example of Ikx. Let us say Bs=Ikx and we will calculate the chemical

shift evolution, that is under the influence of the Hamiltonian HZ. So, the 

So, essentially we are meaning the same thing. So, this will be

Bs
'
=e−iωk I kz t I kxe

iωk Ikz t

 We have previously derived this formula, 

this expression we have derived earlier by explicitly expanding this exponential function as a

series and then we figured out that this can be represented as a simple manner like this.

So, we will use the same trick here. So, we will write explicitly this one in the form of this

kind of an equation,

 So, let us explicitly calculate this. We get here 

 

 

 

 



So, this is -2i and +2i gives me -4i2 that is + 4 and since we get 
t
2

 but this operators they can

move around I have to keep them here, Ikz Ikx and Ikz. So, these ones will stay here, this do not

commute and therefore I cannot move the around and then I will add here two terms of the

cross term one due to this and the other one due to this, this gives me −sinωk t   a commutator

of  Ikz,  Ikx the  two  terms  club  together  can  be  represented  in  this  manner  so  I  have  a

commutator here Ikz Ikx.
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Now, here we have to calculate what this three product term implies, so we have here Ikz, Ikx

Ikz. What does this imply? So, let us try and calculate that using this matrices once more, I

have put here Ikz is 

Ikz=[1 0
0 −1] , Ikx=[0 1

1 0]
So, you put this three matrices and because this is the k spin I can simply take the product.

Notice all of these belongs to the k spin, therefore I can simply take the product here and this

gives me 
−1
4
Ikx.
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So, therefore that 4 4 cancels then I will get here for 

Therefore, what I got finally, I had 

So, after all this calculation what we have got is  Ikx as a result of evolution under the  Ikz

Hamiltonian I  get  this  two terms,  say if  I  want to write  here in simple manner  an as in

 

 



symbolic form Ikx under the influence of the Hamiltonian  HZ gives me it simply means the

rotation gives me Ikx.

So, I write to represent this in the pictorial manner like this. Let us say we draw the three

axes. The three axes we label them as Ix Iy and Iz. Of course it can be is a very general thing

here, it can be k spin l spin whatever it is, so I just represent it as x y and z and this represents

the Hamiltonian part. 

The circle here mean implies this is the Hamiltonian and I have the transverse magnetization

this  is  the  basis  operator  here  kx here  the  basis  operator  and  under  the  influence  of

Hamiltonian this is the time evolution that is going on, this rotates in this manner. So, after a

certain time t if your rotation is here, then I have a 

 

So, this represents a rotation in this manner, so you can extend this argument further to say

that if I were to take Iky here suppose it were Iky, the same rules will apply so this represents

the full rotation of the entire magnetization components.

So, if I were to start from  Iky here,  then after the certain time tau if the magnetization is

rotated like this then what I would get out Iky cosωk t , Iky because this will be cosine, if this it

has rotated like this, so therefore I will have this component  cosωk t I ky−Ikx sinωk t in that

case. 

So, if I were to write for the Iky, let me also write that here, so if I were to start with Iky then

this will  go  Iky cosωk t−Ikx sinωk t.  So, that represents the rotation of the y magnetization

from here to here, so therefore we have derived this principle to how this evolution can occur.

So we stop here.

 


