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Product Operator Formalism continued

So,  we  have  been  discussing  about  the  density  operator  calculations,  density  matrix

calculations.  We  introduced  last  time  a  specific  formalism  known  as  product  operator

formalism 

(Refer Slide Time: 00:36)

Product operator formalism, which will facilitate the calculation of the density operator at any

point in time in a pulse sequence. And this we said this is for weakly coupled spin-systems,

weakly coupled spin-systems which is generally valid in most of the modern spectrometers

which have very high fields.

So, for this means condition was 
J
δ

≪1. So, in this formalism the density operator is written

ρ=∑ bs {Bs }. So, this Bs set constitutes a complete basis set. This is a complete basis set so,

that any density operator can be expressed as a linear combination of the elements of this

complete basis. Okay. So, then we started looking at what these individual basis operators

mean. We said these are generally described in terms of the angular momentum operators

because a very natural thing to do.



There  are  many ways  of  doing it.  And we considered  the  Cartesian  angular  momentum

operators  Ix,  Iy and  Iz for  individual  spins.  Then we can  make  combinations  of  these  to

generate  products  of  two  spins,  three  spins  and  things  like  that  which  will  generate  a

complete basis set, using which we can express the density operator. 

Now, when we define the basis operators, we also must know what these individual basis

operators mean, what does it encode. So, if we want to take the complete matrix, the rho as a

complete matrix as some huge matrix n by n matrix or whatever that this thing is and which

elements are occupied by the particular basis operator.

So, if I want to take a basis operator Bs, one particular basis operator, which elements here

are occupied by this? So, that actually gives us an information about what is the meaning of a

particular basis operator Bs. So, in this context we actually  looked at  one-spin, two-spin,

three spin, defined the basis set of operators.
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And we also looked at last time particular operators like Ikx, okay and Ilx for one spin system

and also for a two-spin system. And what does it represent? What does Ikx represent in this

density matrix? So, we said okay, this will represent in-phase magnetization of  k spin, in-

phase magnetization of k spin. Likewise, it is this if you look at the elements here, so we have

this 1, 1 here, 1, 1 here, this side 1, 1 here and 1, 1 here.

So, this actually give the in-phase magnetization of the l spin, so for, for the two-spin system.

And this is the 4 by 4 matrix. In the individual case of 1 spin system there will be 2 by 2

matrices. For a 2 spin case it will be 4 by 4 matrices. But we can represent the individual k



magnetization or the l magnetization in the 4 by 4 matrix itself to draw a meaning out of that

one. And similarly for a 3spin system also we wrote what does  kx would mean in a 3spin

system of k, l, m. And this will be 8 by 8 matrix and obviously it will occupy 4 elements here

because the kx. If I have k, l, m which are coupled like this, k here, l here and m here, if all of

them are coupled then each one of them is a doublet of a doublet.

So, there will be 4 lines for each one of those and these 4 lines will occupy 4 elements in this

complete density operator. And we saw that they will all have the same signs and we will

have for the each  kx, lx and  mx. There will be 4 different positions occupied,  4 different

positions  on  this  side  and  4  positions  on  this  side  occupied  to  represent  the  in-phase

magnetizations of the  k, l and  m spins. So, now we go forward from this, so, for we are

considering only one spin elements in multiple spin systems.
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Now, we look at the products, products of the operators. So, how do we do that? And that is

what we are going to do today. So, let us consider the particular element which we represent

as 2 Ikx Ilz. So, what it means? I have two, this is now a two-spin product, so of Ikx and Ilz. k

and l refer to the two spins. How do we calculate the matrix representation of this? So, we

take the matrix of kx here and remember these are for the individual spins.

So, therefore these are, since these are two independent and separate spins, we have to take

the direct product. If this is k spin and this is the l spin and we have the direct product of the k

spin and the l spin. The x is 0, 1, 1, 0 and the z operator for those single spin is 1, 0, 0, -1. So,

now to generate a 4 by 4 matrix, we have to take the direct products of these two matrices.

So, therefore at the place where there is 1, I get this entire matrix here, 1, 0, 0, minus 1. Here



again where there is 1, I get 1, 0, 0, -1. And the other four elements will be 0 because we have

0 here and 0 here.

You multiply 0 by 0 this entire matrix, we get 0 here and 0 there. Now, we notice here these

ones represent the single quantum coherences. So, if you  recall the energy level diagram, the

that will tell you, we will see that on the next slide. And we will exactly know, how these

ones mean single quantum coherences. So, these ones are for the two-spin system. We have 4

energy levels as we have mentioned and these ones must correspond to those four energy

levels.
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This is indicated here explicitly. So, we have here the two Ikx Ilz, the same matrix represented

here. And the four energy levels of the two-spin system are α kα l, α k βl, β kα land β k βl. These

are the four states. And for these four states are 1, 2, 3, 4 on this side and 1, 2, 3, 4 here and

therefore I can write these four energy states on the top here. This is αα , αβ , βαand ββ. And

here also αα , αβ , βαand ββ.

So, now you see, so what these elements are? So, we have this transition, this is the 1, 3

transition which means this is 1, 2, 3. This is 1 is here and that is the 1, 3 transition here and

this is the k transition, k is flipping from α  to β and l is remaining the same as α . So, this is

the k transition. So, therefore we say it is one of the components of the x magnetization of k.

And this one is the other transition of the element which of the density operator which is

occupied is 2, 4. And the 2, 4 is this.



And this again is α k to β k and so we have here element minus 1 here. But notice one thing

that  these  two  have  opposite  signs.  This  one  is  +1  and  this  one  is  

-1. So, to represent that we put arrows in this manner. If I put 1 to 3 as positive arrow here to

represent  positive  signal  here,  then the 2,  4 represent  by a  negative  sign.  This  is  only a

representation to convey the meaning as to what we are trying to say.

When we actually measure the magnetizations of these coherences in an NMR experiment,

when I get the spectrum, I will get these two lines in this manner. 1, 3 line will be positive

because it is the +1 here and the 2, 4 line will be negative and that is because of the minus

sign here and this is going down.
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So, similarly for the ky,  lz I have here the same four states. But again once again it is the k

spin. lz, l spin in the z direction and ky, transverse magnetization is of the k spin. Previously

the transverse magnetization was of the k spin but it was x component. So, here we have the

y component. 

This product is ky lz. Now, what we see here? We see -i and i. And this one is represented in

the same manner here. Now, once again you see this you have opposite signs. What is the

meaning of opposite sign? First of all, these are imaginary numbers. The imaginary numbers

meaning we have a dispersive component.

This is 90 degrees out of phase. So, if I call x to y, it is a 90 degrees out of phase and this is

represented here in the by an imaginary number here. So, we get an i here, so therefore if I



have 1, 3 as a particular way, if it is in this manner, then the 2, 4 will be opposite to that and

therefore this goes in this manner here. 

So, you notice here, if this is positive going like this, then this has to be negative which is

going in this manner. So, accordingly you could have chosen either this way, you could have

chosen this way as particular sign and this as a particular as an opposite sign. It does not

matter. So, you will have the opposite signs for these two signals but they will be dispersive

line shapes. Okay, y magnetization means these are dispersive line shapes.
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Now, let us look at a product which is  kx ly. Now, both these components are transverse

components of the k and the l spins. This is x component of the k spin and the y component of

the l spin. So, now what we do? So, we have to add here the, this again I will put k and this is

l. So, for k I have the matrix for the x and that is 0, 1, 1, 0. And for the y I have 0, -i, i, 0. This

is for the l spin. Now, I have to take the direct product of these and then I get here 0, 0, 0, -i,

0, 0, i, 0, 0, -i, 0, 0, i, 0, 0, 0.

It is very interesting. You see which elements are occupied here, remember this was the ββ

state. And this side is the αα  state, so αα to ββ that is actually double quantum coherence. So,

therefore this element represents a double quantum coherence. So, therefore this is the 1, 4

element of the energy level diagram. And this will be double quantum coherence. And this

has a minus sign and it has it is i here. Now, you also have a non-zero element here and this is

i, and this represents 2, 3 state, 2, 3 coherence, right?



This is energy level 2 and this side is energy level 3 and therefore I have a 2, 3 here and the 2,

3 state is actually zero quantum coherence because they are both alpha beta and beta alpha,

their m values are zero and therefore we have a zero quantum coherence here. Therefore, and

similarly and these are the corresponding complex conjugates in this area. So, therefore this

matrix represents a combination of double quantum plus zero quantum coherences. This was

kx, ly and now, if we look at ky lx let us look at ky lx, so what I have to do is simply I have to

interchange these two.

For k I will put 0, -i, i, 0 and for l I put here 0, 1, 1, 0. So, now if I take this direct product, so

I get here 0, 0, 0, -i; 0, 0, -i, 0; 0, i, 0, 0; i, 0, 0, 0. Now, it is the same four elements which are

populated which are non-zero here. The difference however is that these are -i,  -i, here and

these are correspondingly i, i. So, therefore there is a sign difference between these two.

If this way to represent DQ + ZQ, then this will represent one of the elements is changed to

minus sign, so we call it as DQ - ZQ. So, double quantum minus zero quantum coherence for

this element. So, 2 ky lx is represents DQ - ZQ, both of them of course are combinations of

double quantum and zero quantum coherences. But they have different signs and therefore in

this case I have DQ + ZQ. Here I will have DQ - ZQ.
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So, now what I do? So, I have here the same elements represented here. 2Ikx Ily, put the same

matrices here. So, I have 0, 0, -i; 0, 0, i, 0; 0, -i, 0, 0; i, 0, 0, 0. This is DQ + ZQ. And I put

here DQ - ZQ. Now, I take an addition of these two. I take a sum of these because in a density

operator when we are doing, it may be that we will have combinations of basis operators. It

cannot be that we will only have one of them as your density operator.



So, your density operator, remember is a summation of the various basis operators. So, if I

take a combination of these two, kx ly and ky lx, add it over here, then what do I get? I get

here -i, I get here i and all the others are 0. That means I get pure double quantum coherence.

So, this is the unique way of getting pure double quantum coherence. 

And this is because it is  -i here, we call it  as  y. Although you cannot represent a double

quantum coherence as x, as along the any of the Cartesian coordinates as x, y, z, we simply

say by convention for the sake of ease of representation, we call this as y component and this

is represented by i here, this is basically imaginary.

And one could have called them as real and imaginary as well. But for convenience or some

convention which has been used, so we call it as pure double quantum y.

(Refer Slide Time: 16:30)

Now, suppose I do a subtraction of the same two elements, Ikx Ily here, Iky Ilx here and make a 

subtraction. If we do a subtraction, I will get i and -i here and all other elements are 0. So, 

what that means? I get pure zero quantum y. This is y coherence, pure zero quantum. And this

remains as -i, i and therefore it is called as y.
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So,  now  let  us  look  at  the  other  product  here.  2Ikx Ilx.  Now,  in  this  case  I  have  the  x

components  for  both  k  and  l spins.  So,  let  me  write  here  once  more,  these  are  for  the

individual spins. This is for k and this is for l. So, once again it is for k and this is for l. So,

here these direct products now will have real numbers. You see, this product gives me 0, 0, 0,

1; 0, 0, 1, 0; 0, 1, 0, 0; 1, 0, 0, 0. Once again this is a mixture of double quantum and zero

quantum coherences.

Because this is the double quantum, this is zero quantum. This is the mixture of the two and

they have the same sign. So, I represent as mixture of double quantum plus zero quantum

here. Now, if I take ky ly, then now I have 0, -i, i, 0, direct product is 0, -i, i, 0 and this gives

me once again real numbers here. In the 4 by 4 matrix I get here minus 1, 1, 1, minus 1 and

all other elements are 0. So, therefore because of the opposite signs of these two, so this will

be represented as double quantum minus zero quantum.
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Okay, so now what we do? We take, we do the same trick as we did before. So, we take a

summation of these two elements. Ikx Ilx, Iky Ily, remember these two elements is always as the

normalization factor. So, I get DQ + ZQ addition, DQ - ZQ. I get here 0,0,0,0; 0, 0, 1, 0; 0, 1,

0, 0; 0, 0, 0, 0. So, therefore if I take this addition, I have only these elements non-zero.

Therefore, this will be pure zero quantum and I call it as x because this is the real number.

This is not imaginary.
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 Let  me now take the difference.  If  I  take the difference,  then what do I get? The same

matrices here, I take the subtraction here. I get here 1, I get here 1 and all other elements are



0. So, what do I get here? Therefore, I get pure double quantum x coherence. So, therefore we

have seen from this matrices for single quantum coherences and double quantum coherences,

how we can get the representation in the density operator. So, these different elements occupy

different places in the total density operator and whenever they are present, we know we have

created these elements.

And often when we write the total density operator, there will be mixtures of such elements

and they will all be present. By looking at what elements are present in our density operator,

you can say which coherences you have created and which coherences are observable. And

all of that will become helpful in analyzing the results of your NMR experiments.
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 Now, there is one more here and this is 2Ikz Ilz.  Ok now, both are z here, z component, okay.

So, this is k, l and z and this is 1, -1 here and for each of these once more I have to put here k

and l, k and l. This represents a different kind of a situation. We have 1, 0, 0, 0; 0, minus 1, 0,

0; 0, 0, -1, 0; and 0, 0, 0, 1. 

And notice that all the diagonal elements are occupied here. All the diagonal elements are

occupied all off-diagonal elements are zero, which means this operator does not represent

transverse  magnetization  or  it  does  not  represent  coherences  between  the  spins  in  the

individual states. What does it represent?

So, this represent what is called as zz order. Notice, while this has to do with populations, this

is  not the  z magnetization of the any of the particular  spins.  If  you remember,  for the  z

magnetization for a two-spin system, if you were to write Ikz + Ilz, this was the representation



for the total z magnetization of the two-spin system. And this was simply 1 and -1 here and

all other relevance were 0.

So, this was Ikz + Ilz representing the total magnetization, total population difference between

the two for the two spins and that was contributing to the total magnetization. But here there

is some sort of a correlation between the populations of the k and l spins. And therefore we

call it as zz order. It must be distinguished from the z magnetization of the two-spin system.
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So now to summarize all of these, so what we have is thus the basis operators give a physical

insight into the spin-system. Because we have seen what the individual operators are, how

they are represented in the density, density operator, which elements do they represent and

that gives us an indication into what these individual basis operators represent and which is

easy to  calculate.  Iz operator  represents the populations  in the  z  magnetizations,  Ix and  Iy

operators in a multi spin system represent in-phase single quantum coherences along the  X

and Y axis respectively.
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And now we saw here today 2Ikx Ilz, 2Iky Ilz represent single quantum coherences of k spin anti-

phase with respect to  l along the  X and  Y axes. Notice once again, the  kx lz and  ky lz, so

therefore they are both k magnetizations anti-phase with respect to the spin l because that is

in  the  z but  this  represent  the  real  and  imaginary  component  or  the  X and  the  Y axis

respectively. Similar interpretations hold good for the l spin single quantum coherences. For

instance,  if  I  had  Ilx Ikz and  Ily Ikz then  they  would  represent  the  l spin  single  quantum

coherences.

Then we looked at 2Ikx Ily, two spin products with both transverse components and 2Iky Ilx,

2IkxIlx, 2IkyIly, all of these represent mixtures of double quantum and zero quantum coherences.

And  suitable  combinations  of  these  represent  pure  double  quantum  and  single  quantum

coherences. And we can, we have the x components and the y components represented here

as well but that is a kind of convention. You cannot actually draw a double quantum or zero

quantum coherence on the Cartesian axis.



(Refer Slide Time: 24:42)

And then we said if we take a  2Ikx Ilx + 2Iky Ily represents  x component of zero quantum

coherence. 2Ikx Ily - 2Iky Ilx represents y component of zero-quantum coherence. And then 2Ikx

Ilx - 2IkyIly represents  x component of double quantum coherence. 2IkxIly + 2IkyIlx represents  y

component of double quantum coherence. Then the 2Ikz Ilz represents two-spin zz order. This

has to be distinguished from the z magnetization as I indicated before.

So, we have now seen the various components of the basis operators, products, what do they

physically mean and the interpretation they can give, the insight they can give in the density

operator will be useful for understanding the experiments which we will discuss in greater

detail, for varieties of experiments that we will discuss in greater detail in later classes. But

this forms the basis for understanding all of those experiments. 

 So, in the next class we have to see how these evolutions, how these basis operators evolve

with time because that is what is require to be calculated when you require the response of

your spin system through the pulse sequence and that we will stop here and that will be taken

care in the future classes.


