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Evolution of Density Operator in the presence of RF
Welcome.  Let  us continue  the discussion of  the effects  of  the RF pulses.  How does  the

density operator transform in the presence of RF? Because we need to know all such things,

how does a density operator transform under the influence of different kinds of Hamiltonians.

So the RF constitutes also have Hamiltonian and we actually saw last time how to calculate

the evolution of the density operator in the presence of the RF.
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So we had this solution here. We started off with the Liouville equation and we represented a

solution like this: 

And  H 1, there was the RF Hamiltonian was represented by  H 1. And this represent to the

interaction  representation  and  we  also  show  after  detailed  calculation  that  under  the

resonance condition we have the 

and this H 1 represents the Hamiltonian of the RF.

 

 



And we also demonstrated that 

We will explicitly demonstrate that further, how this will represent a rotation. And therefore

having said this, we will say 

Notice here, q can be x, y or z. Generally z is only rotation around the Z axis; therefore it is

not kind of an effect of the RF pulse. But general rotation along the Z axis can be represented

in the same manner if the rotation is about a particular angle β.

And we define now this as the rotation operator, call it as Rq (β), 

and q can be x, y or z. So therefore my 
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And that is the same equation here. We now calculate explicitly the effect of the pulse on the

density operator. So to begin with, let us take the equilibrium density operator Iz. Okay, ρ (0),

Iz. Of course, if the ρ (0) has these other entities but operator part is the Iz only. Therefore, we

 

 

 

 



will pick up only the Iz part of the density operator, equilibrium density operator and put that

here. So the rho of t for ρ (0)put here Iz, Rq (β) Rq
−1

(β). So in order to do this, I need to get

matrix representations of these operators.

These were in the form of exponential operator whereas Iz I knew is in the matrix operator.

Therefore, I have to put this also in the form of matrices. So for this, we will calculate the

matrix representation of the RF pulses. We have to get explicit matrix representations for

these terms. So how do we do it?
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So let us write here again, 

Where, q can be x, y or z. Now, we have earlier seen matrix representations of the operators,

Ix, Iy, and Iz and these ones we have calculated matrix representations of the operators, Ix, Iy,

and Iz. And those ones were simply are given in this except for the factor half. So therefore,

this can be represented as 
1
2
σ q where σ ’s are the Pauli spin-matrices. 

Basically 

I z=
1
2 [1 0
0 −1] , I x=

1
2 [0 1
1 0], I y=

1
2 [
0 −i
i 0 ]

 



Now we take away ½ , you have this matrix as [1 0
0 −1]. And this is represented as σ z and

likewise 

These  are  called  as  spin  matrices.  For  a  single  spin  half,  these  are  called  as  Pauli  spin-

matrices. You can easily verify that the Pauli matrices satisfy this condition, 

But one notice here, this 1 is a unit matrix. It is not just number 1. This is unit matrix, (1 0
0 1)

1.  So this  will  be  useful  for  us  to  calculate  the  matrix  representations  of  the  individual

operators.
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So here I expand this exponential  function as a series. This is a typical expansion of the

exponential function, 

Although the explicit unit matrix is not yet written here, but it is there. Remember this. Okay,

 

 

 



and likewise  
1
4 ! (

iβ
2 )

4

and this is  σ x4.  σ x4 is again 1. Therefore you will get this infinite

series. There are terms which depend on σ x and there are terms which do not depend on σ x.

Now we regroup these terms and we say put all these terms which do not depend upon

And all of these then have multiplication with σ x. So therefore this will be, what is this? This

first bracket is actually an expansion of the cos(
β
2 )

This is the series expansion of the term of the function

 Therefore I had here cos(
β
2 ) multiplied by the unit matrix. And this is, we can write this unit

matrix here. So and the −i σ x sin(
β
2 ). So what does this give me?
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Put this in the matrices, matrix form explicitly, 

 

 



Therefore, now if I put β=
π
2

, if I put β=
π
2

, then what do I get? I get cosine 45 here and sine

45 here and both of them are ¿1/√2. Therefore, 

So this is 1 and this gives me -i, this gives me -i, this gives me 1 and 1 /√2. factor comes out

here.

So similarly, for 

pulse applied along the X axis. RF is applied x, this is again now a 
π
2

 pulse applied along the

Y axis. So this gives me 

1

√2 [1 −1
1 1 ]

(Refer Slide Time: 9:12)

So similarly, we can calculate matrices for the π pulses. If I choose β=π, then

 

 

 



And 

The effect of these pulses on the density operator can be explicitly calculated using these

matrix representations. So for example, for a density operator represented by  Iz, so this is

easiest example to take. So we take the equilibrium density operator represented by Iz.

We will calculate what is the effect of R x=
π
2

. Is it actually a rotation? Now we will actually

demonstrate that this pulse does make a rotation.

(Refer Slide Time: 10:01)

Okay, how do we show that? So the density operator here 

and therefore I put here 

 

 

 

 



So now we calculated what is R x=
π
2

. That was this. And now I get here a 
1

√2
 from here, 

1

√2

from here and this gives me 
1
2

 in the matrix. Therefore, I have 
1
4

. And this gives me 

Half factor we have already taken away here and the inverse of this Rx inverse, inverse of this

matrix is this: 1, i, i, 1. How do I say this? Because now you see if you multiply this matrix

with this matrix, you will get 1.

So this product you take 1, 1 here and this gives me 1. And  −i2so  −i2=1.  So therefore,

1+1=2. We can actually do that. Let me do here the 1,−i−i, 1 and multiply by 1, i, i, 1. So

this gives me, this is equal to 1, −i2, this is 2 and this is i, −i this is 0. And – i+i=0. And this

is −i2=1, +1, this gives me 2. And therefore, if I take this
1

√2
, 
1

√2
, I will have 1 by 2 here.

Therefore, this is equal to 1, 0, 0, 1. So therefore, what I have got? Therefore this is the

inverse, this is demonstrated that this matrix is the inverse of this matrix.

¿
1
2 [ 0 i

−i 0]=−I y

So what I have got? As a result of this  I z→−I y. Therefore there is a rotation, 90 degrees

rotation. Therefore we have explicitly demonstrated that the z magnetization is rotated onto

the, so if I had the z magnetization here and if I apply the x, this is X, Y, Z the axis, and this

rotates, it transfers magnetization along this. So I get here magnetization rotation to −I y. So

for clearly this z magnetization is rotated onto the negative Y axis.
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Now for  two-spin  system,  that  was simple  for  one-spin  system.  For  two-spin  system,  of

course it is also simple but we have little bit more calculation here. Now there are two spins,

both are independent. Now I want to calculate the matrix representation of the pulse for two-

spins. So both are, I=
1
2

, so they have this one spin here and the second spin here. So let me

call them as spins k and l, so if I call this as spin k and this spin as l, and each one of them is

independent. Therefore, if I want to represent a matrix, it represents both of them.

I  have  to,  when  I  take  the  product,  the  product  means  I  cannot  take  a  simple  matrix

multiplication here. I have to take what is called as the direct product.  So direct product

means each of these element, when I take the multiplication of the direct product means if I

take  this  and multiply,  I  put  the  entire  matrix  here.  Multiply  the  entire  matrix  with  this

element, therefore I get here 1, −i, −i, 1. Now so far as this element is concerned, I multiply

minus i with this entire matrix. Therefore, I get −i here and −i into −i this gives me +i2, that

is minus 1 here.

So now you see this is the 4 by 4 matrix. So I should get a 4 by 4 matrix, that the I x operator

for a two-spin system is a 4 by 4 matrix. So we get that by doing this direct product of the



individual spins because the two spins are independent and they can be multiplied by this

direct product method.

So therefore, I get a 4 by 4 matrix and my operators Ix, Iy, Iz, they will also be 4 by 4 matrices.

And this is the way we calculate the matrix representations of operator for RF pulses.
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So similarly, we calculate for 

R y (
π
2 ) (non−selective )=

1
2 [1 −1
1 1 ]

k

× [1 −1
1 1 ]

l

I take the direct product. So if I take the direct product, I get here 1, minus 1, 1, 1, that is the

same. And then this is basically multiplying with minus 1, this whole thing, so I get here

minus 1, 1, minus 1, minus 1 here. And this will be 1, minus 1, 1, 1. And this will be 1, minus

1, 1, 1. Because all these are 1’s here.

So therefore this will be except this, this term will be different. So this R y (
π
2 ) now consists of

all real numbers. Whereas Rx contain all imaginary i's also. Using such matrix representations

for the pulses and the density operator, the evolution of the density operator through a multi-

pulse experiment can be calculated.
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So put this all in summary. I have for one spin, 

And similarly, for the two-spins you have 4 by 4 matrices and you have calculated here 

 

 

 

 

 



which will contain only anti-diagonal elements. Notice here, of course here also they contain

anti-diagonal elements. This is the diagonal and this is anti-diagonal. So I have only anti-

diagonal elements here and here also I have only anti-diagonal elements, 

And this indicates how, this shows how the calculations have to be performed.

(Refer Slide Time: 17:12)

Okay. So for now we can, now we are ready to calculate any kind of a matrix representation,

any kind of evolution of a multiple-pulse experiment. So if I have multiple pulse experiment,

so I start with initial density operator  ρ (0). Start with this, apply a pulse  P1 here and then

allow the spin system to evolve under the influence of the Hamiltonian H 1 for the period τ 1.

Then apply a pulse P2, then apply and then allow this system to evolve the influence of the

Hamiltonian H 2 for a period τ 2 and continue like this.

Therefore, any number of pulses what we might have here, I can continue to calculate the

evolution of this, of the density operator through the pulse sequence and finally I will get

 

 



density  operator  here  which  is  what  I  actually  measured.  And  then  that  contains  entire

information about the evolution of the spin system through the pulse sequence. Okay, how do

we actually do it? So therefore we start with the ρ (0), this is my initial density operator.

So if I put the density operator here, the first thing that is coming here is the P1. That is the

pulse. Therefore, when I have the pulse, I have P1 and P1 -1. So this is the what I get after the

first pulse. That means for this part of the evolution, the density operator here becomes the

ρ (0).  This is the new  ρ (0).  So for the beginning of this one, this becomes my  ρ (0). So

therefore  this  is  my  rho0  for  the  next  operation  and  that  is  the  evolution  under  the

Hamiltonian H 1 for the period τ 1.

So e to the power minus i by h cross H1 tau1 and on this side you have e
i
ℏ H1 τ1. So now, where

I am? I have reached here at the end of this. Now apply the pulse again. If I apply the pulse,

therefore once again I multiply by P2 here and P2 - 1 here. Now if I, then I reach here, then of

course I will have to multiply by e
−i
ℏ H2 τ2. And on this side, e

i
ℏ H2 τ2and so on. So this is the way

one can actually calculate the matrix representations of the density operators and evolutions

of the density operator through the multi-pulse experiment.

And that is way one has to calculate it and I think we can take it forward in the next classes

and with the explicit  calculation and see what is the physics and what is the science that

comes out of these calculations. So we will stop here.


