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Density Matrix Description of NMR – 4

So, we are going to continue the discussion of the density matrix, for the description of the NMR

experiments. 

(Refer Slide Time: 00:34) 

As a recap I have put here the generalized form of the density matrix for an n level system. So,

you have this n, the small n, there are n level system, and if you recall, all the diagonal elements

in the density matrix represent the populations of the individual levels,  so these ones I have

represented as  P1,  P2,  P3,  P4 and  Pn like that.  The off diagonal elements represent the phase

coherences between the spins in the individual states. 

For example, if I take this the energy levels are labeled 1 to n, this term represents a phase

coherence between the spins in the states 1 and 2. The extent of phase coherence is represented

by this coefficient here, C12 and this shows the time dependence of this phase coherence, and that

goes with this frequency ω12. So, this is an oscillating function, this is phase coherent, this is the

degree of phase coherence and that is oscillating with frequency ω12. 



And this will be the phase coherence between the states, between the spins in the states 1 and 3

and this is the extent of phase coherences with the magnitude amplitude and this is the phase.

How does the phase change between the two spins? So, it is oscillating with the, with time and

like that for every pair of states you have a phase coherence between the individual states. And

so therefore, in principle you can have phase coherences between any two states, and therefore,

here nothing is assumed to be 0.

However, in reality, of course, all of these terms will not be non-zero, there will be some terms

which will be zero, or which some terms which will not be zero and that will explicitly consider

when we take specific examples. 

(Refer Slide Time: 02:41)

Now, having seen what the density operator is, the density matrix is, and we must also see what

is a measurement, in fact, we have discussed this earlier also. When we measure a signal in NMR

experiment, what we are actually measuring is the so called expectation value of the relevant

operator. 

Mx or My or M ±, M ± these are called as raising and lowering operators, this is called Mx + I My,

but remember here, earlier I used symbol, here I used the symbol Ix to measure X magnetization

or Iy for measuring Y magnetization and you can also measure in between the two, then that is

called as I x±i I y→I ±. 



So, for convenience I have used here Mx to say it is magnetization, but this earlier I have used the

nomenclature  Ix and  Iy,  these  are  the  operators  Ix and  Iy,  which  represent  the  transverse

magnetization components,  X and the  Y components.  The expectation value is given by this,

which is the trace of the density matrix with the Mx matrix. And notice here it is the symmetry,

the trace of  ρ M xis the same as the trace of  M x ρ, so it does not matter here, which way you,

which order you multiply it, but the trace is invariant to that. 

So, this is a kind of a principle which is generally valid and one can easily verify it by taking

different kinds of  ρ ' s and  M x's and whatever, then you will find that this equation is actually

valid. Now, let us take an example, we take an example for a one spin system, I=
1
2

. So, it has

two energy levels, I is equal to half as two energy levels, therefore, the  ρ (t) will be a 2 by 2

matrix. 

So, we have two populations here, and there is a coherence, one coherence between the two

energy levels. So, 

essentially looks like a complex conjugate of this, this was the same as in the generalized case. If

we have such a kind of a one spin system which is clearly not the equilibrium density matrix,

right? 

In the equilibrium density matrix we had the populations non-zero, and these ones were 0. So,

therefore, this is clearly a non-equilibrium state created somehow, so we will not go into that one

now, we will come to that later, when we discuss the multiples experiments. So, we will assume

that we have somehow created, these coherences between the two energy levels 1 and 2 and we

also assume that the amplitudes here are the same. 

So, this is a particular amplitude here, and of course, the same amplitude is present here, we

assume it is the same. So, this is my initial density operator to start with, we do not ask, how I

 



created this at this point, and we will see what is the consequence of this. How we created it

comes later, and that will that also we will see in due course. 

(Refer Slide Time: 06:08) 

So,  let  us  exactly  calculate  it  now.  Earlier  you  remember  we  calculated  the  matrix

representations of the Ix operator.

Likewise, for this multiplication 1 into P1 + 0 into this and therefore, this will be equal to P1 and

the fourth one will be 1 into ei ω12 t and 0 into P 2, therefore you have this. So, now what is the

trace of this? You remember the definition of the trace, the trace is the sum of the diagonal

elements of the matrix, so if I add these terms and you have 

 and that is the cosine function, so the ¿ cos(ω12 t¿)¿. 

 

 



Therefore, what I measure is therefore this coherence, I measure the time dependence of this

coherence here and so including, now if I include the transverse relaxation which has not been

included  here  in  any  of  these,  we  only  included  the  time  dependence  and  the  frequency

dependence of the phase coherences here, and the relaxation is not included. So, if I include the

relaxation I have to multiply this whole, this is the transverse magnetization, right? 

So,  the  transverse  magnetization  has  to  be  multiplied  by  e−t /T 2,  where  T2 is  the  transverse

relaxation time. So, if you plot it, what do I get, I get this function, which is basically my FID,

right? So, therefore, I am actually, if I create the density operator which has off diagonal element

which is  non-zero,  that reflects  itself  in the measurement  of the magnetization and what we

measure is the FID as a function of time, what we are measuring is free induction decay, this is

the FID. 
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Let us extent to two spins, that was one spin. Now, M x=M 1 x+M 2x, or otherwise one could have

taken I1 x+ I2 x, but let us keep the same nomenclature M 1 x+M 2x. Now, for the two spins both are

spin half systems, the two spins both are spin half, so then I will have, for the two spin system I

will have four energy levels here, where and these ones are represented as α A α X. 

 



This A and X represent the spins, one spin is called A other one is called as X, this is capital X not

to be confused with this coordinates x,  α A α X, and then I have the energy level 2 α A β X, energy

level 3 β A α X, and energy level four is β A β X. So, these are called as product functions, these are

the Eigen functions of the Hamiltonian and for the weakly couple situation as we have seen in

the lectures on analysis of NMR spectra. 

So, for weakly coupled Hamiltonian this the spin system these ones are Eigen functions of the

Hamiltonian and they represent the energy levels in this order. So, we call it  α A α X,  α A β X as

number 2, β A α X as number 3, β A β X as number 4. And we will maintain this same convention in

defining the energy levels and their  spin states. Now, so here for this spin state, what is the

azimuthal quantum number, this is +1, n here it is 0, here it is 0, here it is -1 because α=
1
2

 and

β=
−1
2

. 

And it is true for both, therefore this adds to plus 1, this adds to 0, this also adds to 0, this adds to

minus 1. Simply, dropping these A and X subscripts here, we can simply write these states as

1=¿αα>,2=¿αβ> ,3=¿βα>, 4=¿ ββ>¿.  Now,  once  again  I  will  assume  a  non-equilibrium

density operator of this form. Notice here, this was again from the generalized statement of the

density operator or the density matrix. 

So,  I  have  here  the  four  populations  of  the  four  states  here  P1,  P2,  P3,  P4 and  I  have  the

coherences between the states 1 and 2, spins in the states 1 and 2, spins in the states 1 and 3, and

this represents the spins in the states 1 and 4 and this represents the spins in the states 2 and 3

and this represents 2 and 4. Likewise, so I will also have 3 4 here, and these are their complex

conjugates, complex conjugates in the sense, these are actually supposed to be ω21, ω31, ω41, but

ω21 is−ω12. 

 



Now, notice here, the spins in the states 1 and 2, so what is this phase coherence, what are, what

is  this  coherence  here,  what  is  this  frequency?  This  frequency  is  basically  the  transition

frequency of the spin X, right? So, it is this transition α→β, therefore, this represent, this single

quantum, single quantum coherence here. 

We call it as the single quantum coherence because what is the spin state, I mean the azimuthal

quantum number  change,  this  is  plus  1  here  and  0,  therefore,  this  is  one  transition,  or  the

coherence single called, is called as single quantum coherence. This re-corresponds to the spin X.

Likewise, this also represents the spin X, the single quantum coherence, α X→βX  here, the A spin

is in the β state here, A spin is in the Alpha state here, and that is the difference because of this

there could be changes in the frequencies and this we have seen earlier. 

The interesting thing is here, ω14, if there is a coherence between the spin states here and here,

and this is double quantum coherence, right? Because this is plus one here and this is minus one

here,  therefore,  the  separation  between them is  2,  and therefore,  we call  this  as  the  double

quantum coherence. These 4 are single quantum coherences, SQ 1 2, 1 3, 2 4, 3 4 are single

quantum coherences and 2 3, what is 2 3, 2 3 is from here to here, right? 

And this is zero quantum coherence because there is no change in azimuthal quantum number

here.  So, it is zero here and zero there,  in both the states it  is zero and therefore,  it  is zero

quantum coherence. So, let us assume that we have a density operator which looks like this or

the density matrix which looks like this and what are we going to get if we calculate the trace of

Mx with such a kind of a density operator. 

(Refer Slide Time: 13:55) 



Now, once again you recall back, what was the Ix operator or the Mx operator here for a 2 spin

case, 2 spin case this Mx operator was 

and if recall here these ones represent the single quantum conferences. These represent the single

quantum coherences 1 2, 1 3, 2 4, 3 4 and these are the, their respective symmetrical elements.

So, now we multiply this with this density operator. I created a density of matrix like this with all

these elements as nonzero and I have the measurement by the Mx operator. 

And therefore, if I do this calculation here you see this row multiplies this column, so that gives

me only these two terms, first row, I mean first element here multiplication this to this, gives me

once again these two terms, we have to see only these two are nonzero, only these two will

survive in this second element and the third element in the multiple product will contain these

two and the fourth will contain these two. 

So, likewise you can do for the second row as well and that one will contain elements in the first

position and the fourth position. So, if I multiply here this will contain P1 and 1 4 and this will

contain this one and this one, and this one contain this one and this one, likewise, this one and so

 



you can calculate this and after that you regroup those elements which are present in the total

matrix and then you take the trace. 

When you take the trace you have to add the elements of the density, the diagonal elements of

the density matrix, just as earlier you got only 

Notice none of the populations appear here, in the trace the populations are not appearing nor or

the double quantum and the zero quantum coherence is appearing here, right, that is interesting. 

Therefore, when you measure the Mx, you are only measuring the single quantum coherence, that

is what is the measurable magnetization. So, the populations are not measurable magnetization

because Mx is the magnetization in the transverse plane, this is X component of the magnetization

and the populations, therefore, cannot be contributing to the measurable magnetization. 
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And interesting thing is the double quantum and the zero quantum coherences even though they

are present in the density operator are not detected, this constitute non-observable magnetization.

So, if we have to observe this, you will have to convert this into observable magnetization by

some  tricks  and  this,  of  course,  one  will  do  all  the  time  when  we  actually  do  multiple

experiments.  So,  this  is,  the  take-home message  here  is,  when  you want  to  measure  the  X

component or the  Y component of the magnetization, you will only collect the single quantum

coherences. 

You  will  not  collect  zero  quantum  coherences  or  double  quantum  coherences  or  even  the

populations. Now, let us see how the various conditions are created of the density operator. So,

obviously one has to do some perturbations and in a multiple experiment we have lots of RF

pulses, we must also know, we must also know, how to calculate the effect of the pulses on the

density  operator  and  because  the  density  operator  is  supposed  to  be  containing  all  the

information about the spin system which includes the populations and the various coherences

and how these ones get transformed under the influence of the RF pulses. 
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So, to do that we must actually go through this calculation once more and how does the density

operator transform in the presence of the RF pulse. So, now we have to define a Hamiltonian

appropriately. So, the Hamiltonian now consists of this original Hamiltonian which 

H=H Z+H J

is your main interaction with the Zeeman Hamiltonian plus the coupling, the J coupling which

are present, which is time independent. 

Earlier we saw that it is the, the main Hamiltonian is time independent and this is the portion

which is a time dependent part because of the RF pulse is the time dependent, where you apply it

for  a  short  time,  this  generally  one applies  for  extremely  short  time,  but  there  is  a  general

thinking that one can treat this as a δ function but nonetheless there is a time dependence here,

the RF is applied for a certain is zero and then it goes up and then comes down. 

So, the frequency is applied for a short  time τ, therefore in this Hamiltonian there is a time

dependence,  this  time,  of  course,  is  extremely  short,  this  may  be  of  the  order  of  1  or  2

microseconds  and  sometimes  tens  of  microseconds,  but  not  too  long.  So,  H0 is  a  time

independent part of the Hamiltonian and H1 (t) which is time dependent represents the RF pulse. 



So, now we rewrite your Lioville equation, 

Now, so what was the solution when this was not present, you recall that

ρ (t )=e−i H0 t , ρ (0 )=e
i
ℏ H 0 t

That was the solution in the absence of the H1t, right? So, maybe I shall write here for quick

reference, 

So,  this  was the solution  we had.  In  the presence of the RF, now we would like to  seek a

solution, which looks like this, instead of thisρ (0 ) here, we put in here an entity defined as ρ (t )¿. 

This is the same, this we keep the same and we call this as ρ (t )¿. I will explain to you a little bit

later and this is actually called as the interaction representation because we are now going into a

frame of reference when the interaction is present between the RF and your spin system. And

this is also, this is the Zeeman interaction and this represents the going into the rotating frame

under conditions of resonance, we will see that very soon. 
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So, now what  they do, I  is  substituted  there and do a little  bit  of mathematics  here,  do the

algebra, differentiate this 

 (Refer Slide Time: 21:30)

 



So, this was there. So, if I differentiate it here, what I will have, I will have two quantities here.

This is one commutator ρ with H 0and the other commutator row with H 1(t ), right? So, this is 
i
ℏ

commutator of ρ with H 0 and another commutator rho with H1(t ). 

(Refer Slide Time: 21:55) 

So, that is put there and this is 

So, this little bit of algebra is there here when we do the differentiation, you will get the terms

which will  pull  them together  it  will  give you this,  and this  term will  stand out  separately,

because here is the differentiation with respect to the ρ∗¿, because earlier this was not there and

this was ρ (0). 

So,  now  this  will  appear  separately  because  we  have  a  time  dependence  here  as  well.  So

therefore, and this must be equal to this 

 



So, put it separately out, the two commutators are put out separately here, so therefore, this right-

hand sides of the two have to be the same. This must be equal to this, since this and this are the

same, therefore, this will become equal to this. 

So, now what we do, I want to get an equation for 

So, this will become 1 and multiply from the right, 
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So, then we take this calculation further, and 

Once again there is a bracket here, this bracket I by H cross multiplies the whole thing. Anyway,

so that is since this is all inside the bracket here, it  does not matter.  So, what they do now,

i
ℏ e

i
ℏ H 0 tρ

. 

Now, here I introduce this.  At this point, I introduce this. So, in between ρ H 1, I put in this e−i by

and I do the same thing here as well. At this point also I will introduce this, what is that, that is

basically one only no, so here is the ρ, this is 1 so, therefore, ρ H 1 is not perturbed, so I put this

in between and then this H 1and this is e
i
ℏ H0 t 

And similarly, for this I have this e
i
ℏ H0 t that comes from here, this term then H 1, then again in

the middle I introduced this 1. It taken as the product of these two quantities which is actually 1

 



and ρe
i
ℏ H 0 t. Now, we notice something very interesting happening. So, this portion, this portion

is similar to is my ρ¿ e
i
ℏ H 0 t, ρe

−i
ℏ H 0 t this is my ρ¿. 

Now, this one from here to here is a similar transformation with H 1, therefore, I call this as H 1
¿

and likewise here, from here to here, from here to here, this is 

So, that is basically my commutator ρ¿H 1
¿. Therefore, 

Now, this is called as interaction representation, this represents the interaction between the RF

and your spin system and in the rotating frame this becomes equivalent to the rotating frame

under resonance condition, under resonance condition this one is actually is 0 and we will see

what is the consequence of that. 
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Let us try and calculate the matrix element of this 

and I explicitly put here for 

What does this give me? This give me 

Ek,  because this  is an Eigen function of this, of the Hamiltonian  H 0,  right.  So therefore,  H 0

operating on the state k gives me Ek. 

Therefore, this being in the exponential, so I have here e
i
ℏ (Ek−Em), this is operating on the state m,

so this view with the energy Em and I have here, therefore, and the matrix element of k|H 1 |m. So,

this being numbers this can be taken out therefore I have here So, this is a matrix element and

this is the time dependency, the time dependence has come here and the time dependence from

this, will we will see how this will slowly can be removed. 

Now, notice this is the energy difference between the two states k and m. 

 

 



So,  time  dependence  is  completely  taken  out.  It  comes  in  this  term  and  this  one  is  time

independent and this represents the amplitude of the RF at time t is equal to 0 and during the

pulse also the amplitude will not vary if this term is non-zero, if the term is 0. 

(Refer Slide Time: 29:51) 

So, what happens now, look at this Ek−Emis the energy difference between the two levels, right?

And what  is  the order  of  this,  this  is  typically  in megahertz,  this  is  also in  megahertz  ωRF,

therefore this difference is typically of the order of your spectral  range which is in kilohertz

range, and therefore, this is an extreme and if your time is in in microseconds t, the duration of

the pulse, if it is in microsecond this will be extremely small number. 

Therefore, the time independent term will be extremely slowly varying during the pulse and can

be  effectively  considered  to  be  constant,  in  fact,  under  resonance  condition  this  is  ideally,

identically  zero,  right?  So,  this  is  the  resonance  condition,  when  you  have  the  resonance

condition this is identically 0 then there is no time dependence at all. Because you know all hertz

per experiments you notice our H 1 is so large, the amplitude of H 1 is so large that the resonance

condition is actually satisfied for all the spins at the same time. 

 



Because the effective field is along the  H 1field, the field along the  Z axis the 0 field is 0 and

therefore,  the  resonance  condition  is  satisfied  for  all  of  them at  the  same  time.  Therefore,

typically for a hard pulse which is of the order from one microsecond or even sometimes you can

effectively  treat  as  the  delta  function,  when  it  is  zero,  then  this  term  will  be  completely

independent of time. In that case the matrix element this can be assumed to be independent of

time, in other words during the time of the pulse H 1
¿ star can be assumed to be time independent

and is equal to the amplitude of H 1. And what will be the amplitude of H 1, this is not varying,

therefore it must be equal to  H1(0), so what was in the beginning that is what is going to be

there. 
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Therefore, when if it is time independent then I can write the solution of this equation as 

Now, I can replace this 

 

 



And now, ρ¿
(0 )=ρ(0)  and therefore, I can also replace this as ρ (0)  .

 

(Refer Slide Time: 32:10) 

And then you will also see that even the  ρ¿, since this is under the resonance condition this

evolution also extremely small, then my ρ (t )=ρ¿, therefore, I can write the whole thing as 

This becomes a very simple calculation now and we can calculate the evolution of the density

operator under the effect of the RF pulse in the, so notice this is valid during the pulse. 

We should remember this, this is the thing which is during the pulse and we assume we are in the

resonance condition and this density operator and the interaction representation becomes equal to

what  is  in  the  normal  case.  This  density  operator  transformation  by  the  RF  pulse  can  be

described in this manner. 
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So, now we are ready to calculate explicitly the form of the Hamiltonian  H 1 in including the

interaction between the magnetic moment and the H 1. The effective field is now along the RF

axis, right, is equal to the H 1. So, 

 if the H 1 RF is assumed to be applied along the Ix axis then the transformation operator it is

e
−i
ℏ H1 t  

Now, what is this interaction, you put here for the  H 1 you put  γℏH 1, so the  γstays there,  ℏ
cancels with this ℏand the γ H 1=ω1, ω1is the RF you convert the RF amplitude into a frequency

that is ω1, γ H 1, γ H 1 t  and γ H 1 t  we have seen earlier that it is a flip angle, is a particular angle,

this is the frequency and this is time t and therefore, this is the flip angle. 

So, the processional frequency, γ H 1 of the processional frequency in the rotating frame, in the

under the resonance condition and therefore, how much the magnetization is flipped will depend

upon this time t, so we have seen that earlier this is you can create a 90 degree rotation or 180

rotation and things like that depending upon what the time what we will have here. So, this

 



represents the rotation of the magnetization about the X axis by angle β and thus depending upon

the length of the pulse different rotation angles can be obtained. 

Now, we will also explicitly show that putting this equation for the pulse, we will demonstrate

that it actually results in rotation of the magnetization from the Z-axis or wherever. So, similarly

for the RF applied along the y axis the rotation by the pulse is represented by e−i β Iy. So, this

can be extended to other kinds of situations wherever you want to apply, if you want to apply

somewhere in between, then one has to put in I x+ I y and things like that so those are called as

phase shifted pulses. 

And so, we will not discuss about those things right now, we will say, we will take the simpler

cases where it is clearly along the  X or the  Y axis and this will be sufficient to understand the

principles that are happening and those involved things can be calculated separately. I think we

will stop here and we will continue in the next class with further description of the pulses and

their effects on the magnetization.  


