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Time evolution of density operator

In the last class we have seen how to calculate the matrix representations of the angular

momentum operators in the basis of the eigen states of the individual spin systems.

(Refer Slide Time: 00:44)

Density matrix description of NMR
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We considered explicitly one spin system with I ZE, and two spin systems both with I 25, two

spins labeled as 4 and X and we calculated the matrix representations of the operators 7. /; and /..
And we also talked about the general properties of the individual spin states, what does the
orthonormality mean and how it is used in the calculation of the matrix representations of the

angular momentum operators.

We went through step by step and now we will continue this exercise and try and calculate the
matrix representation of the density operator, which is of crucial value for us in the description of

the NMR experiments. So, we had derived the expression for the density operator p for a single



: 1 : o .
spin 1 :E’ we had calculated that the density operator can be represented in this manner, which

1S

1 yhH,I,
Pt

where H is the magnetic field.

In fact, this is how we actually started calculating the matrix representation of the angular
momentum operators, plus we discovered here and we showed here that angular momentum
operators were intimately connected with the density operator and that is the one which is
actually going to tell us about the response of the spin system to various kinds of perturbations in

your NMR experiments.

So, for the single spin we will write this density operator as in this manner, is it will be a two by
two matrix because the two spin states for a single spin are alpha and alpha and therefore, I will
have here pq, Pog, Ppas Ppp- The states here are the ket states and the states here will be the bra

states and I will care to calculate the matrix representations, the matrix elements Puq, Pog, Ppas Pps
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Let us do that. So, p,,, explicitly, you write it as alpha here,

Pae =< alpla >
and that is equal to, now,

1 yhH,I
0., = a|§(1 +k—TOZ) |la >

So, now, this one does not give us anything, so I will have, I take out the a completely from

here, and then I will have alpha 1 alpha and that is simply aa.

And then I will have here this part the a,

hH
Y27 ~ all,|a >}

1
Paa =5{< ala > + KT

then I will have this matrix element coming @V I,V a because . is an operator, | cannot take that
out, so this is the constant here. So, this I can take it out, so then I will have a VI,V a. So, this

gives me one because of the orthonormality.



So, therefore,

1. 1yhd,
2 kT
So, totally, Rho alpha alpha will become
B il
,D aa +
2 4 kT
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Now, P, so it is the same way,

Pap =< alplB >

1 thOIZ

So, this now gives me



1 hH
Pap = S{< alB > +12 < a|l,|B >}

1
Pap =§{0+0}

And similarly, here this gives mea VI,V B, I,V gives me —f3, therefore, I will have afhere

and once again this will be 0. So, therefore, this total element will be 0.
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Similarly, Baif I calculate, this will again give me 2, this is 8 here and «a there, therefore, this is

1 . . . . .
E'Ba will be 0. And here once again this constant being the same, . on a gives me Ea,

therefore, they have fa, the fa also gives me 0, therefore, this will also be 0.
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Now, Bwill yield some non-zero value because as in the same way as the aayielded, so B% half

here and this gives me

1 VvhH, I,
— (14 L0z
ppp =< Pl5|1+—= |15 >

therefore, this total will be
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So, put it all together so the matrix representation of the density operator is explicitly here the
diagonal elements, these are the diagonal elements, this will be non-zero and off diagonal
elements are 0. Now, these diagonal elements are the same what we calculated on p,, and pgsa

and that is I can take this, separate it into 2 matrices here, so therefore,



1 " yhH,
[ pag]zli( T2kt

) 0
1 yhH,

0 2 2kT
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You recall the previous class that this was actually 7. operator for the single spin system and this

is the unit operator. So therefore,

p_1(1 0 VhHo(l 0)

=200 v/ 2k 0 -1

because if I take away the 1, one more 2 [ have to take it out, then it will be I,. So, therefore, they
simply once we know the matrix representations of the individual operators, one can straight

away this write these matrix elements in for the total density operator as well.

But here, we actually from the first principles we calculated and demonstrated, how this

expressions are obtained. So, this will be in a simpler form

210 1) 2kT *

So, therefore, if [ want to write explicitly in a similar form, I can also write this as

_1 .yhH,
p=o It L

Here, [ am actually representing the matrices of 7, and the matrix /.

The 1,

o

this / is a unit matrix 1 0 0 1 and this is the L of the single spin 1 0 0 minus 1, right? So, this is
the way also one can write once you know the basic matrix representations of the individual

operators one can write the density operator also in that manner.
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For multi-spin systems the Hamiltonian will be
H=H,+H

Where }, represents the Zeeman interaction and };represents
the J-coupling interaction. Under high field approximation the
contribution from H; will be very small compared to that from
H,, and then the J-coupling can be dropped for the evaluation of
the elements of the density matrix.

Explicitly for the two spin system AX

1 1 yhH,l,
20+ 1),21 + 1)y kT

p=(

0
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Now, that was for the single spin system. Now, let us do it for a multi spin system, you go a little
bit more because we always have to deal with multiple spin systems. So, if I have multi spin

systems, then I will have to consider the Hamiltonian in a more generalized form that it has the

H = H,+H

Hamiltonian is $)z, this is a Zeeman part of the interaction and this is the coupling interaction

which is the $),.

So, $); represents the Zeeman interaction and $); represents the J coupling interactions.
However, under high field approximation that is because your magnetic field is of the order of
several Tesla's, right? So, therefore hundreds of kilowatts, so that is a huge magnetic field and
this £);, this is in few hertz, okay. So, this is about coupling constant, this is about 10 hertz, 20
hertz and things like that and this is in megahertz.

Several megahertz is the total interaction here it is in megahertz, and this is in several hertz,
therefore, this is a very small quantity and often one can neglect this for the purpose of the

calculation of the density matrix. So, therefore, explicitly for the two spin system AX, we will



write in this manner, this is 1 by, now n is the total number of states, right, the total number of

states are

i1
N [2I+1],(21+1),

So, therefore, the total number of states will be the product of this. For example, in the case of 2

) 1 . )
spin I :E’ we had 2 states here and 2 states there, so therefore, it became 4 states. Therefore, in

that case it will be, it will 4 for the two spin system I is equal to half, this will be 4. and . again

will be the sum of the two operators for the individual spin states.
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With I, = 1,(4) + I,(X)

IfAand X are spin-1/2 systems

The eigen states of the spin-system are a,ay, a,fy, By,
andﬁﬂﬁx.

0

MNPTEL

Now, so let us recap that here,
With I, = I,(A) + L,(X)

If A and X are spin half systems, I will have this 4 states as individual basis set states o 0y,
a,Bx, Baayand B,By. So, once again I will write them as in the form of energy level diagram
here, if these ones are non-degenerate, then I will have these 4 energy levels, then I will have 1 2

3 4 as labels for this 4 individual states.



This is the convenience, we have just labeled them in this manner, one can label it any another

manner also, but one has to keep the convention and maintain the same convention all through.
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P11 P12 P13 P14
_|Pa1 P2 P23 Pas
43 P31 P32 P33 P34
Pa1 Pa2 P43 Paa

So, now the generalized form of the density operator or the density matrix for will be in this

form, matrix representation of the density operator will be

P11 P12 P13 P14
_ (P21 P P23 P24
‘N P31 P32 P33 P34
Pa1 Pa2 P43 Pas)

So they will have a 4 by 4 matrix for the density operator.
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Let us try and calculate these individual elements more explicitly. So, let us do for py;, the is, |
have, now I have dropped this 4 and X here because we have already seen that explicitly, for
simplicity I drop the 4 and X, but it is understood that they are there, this will be a ,ay, a ,ay,
but simplicity I have just dropped the 4 and X, we understand that they are there.

. . . 1
So, now if I want to calculate this, so this will be 2(21 +1),, there are two states there, and for

the X also two states, therefore, this total number of states will be

yhH,

1|
aalaa > + k

4 [{< a|,(A)|a >< ala >}

H< ala >< al|l,(X)|a >}]

Plus and these are now the A states a ,a, and here are the X states, these are ayay, L. (X) is
coming here. Now, so this gives me 1 and what does this give me, this gives me half, right, this

gives me half, this is 1 and this is 1, this also gives me half, therefore, this is half plus half. So,

= synH==i =

B R R

Therefore, I will have a total of



yhH,
kT

[1+ ]

1
4
So, this is the first diagonal element of the density matrix.
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Now, we calculate p,, the row 1 2, this is the second element of the first row and this is

1

yhH,I,
P12 = 4 <aa kg

1
+kT

B>

1 .
" here as before and then aa, and here I have af3. So, the first number, this gives me aa af here,

this obviously goes to 0 because orthogonality of these individual states and this

yhH,
4KkT

1
=—< aalaf > +

4 (< all;(Dl|a >< a|p >}

H< ala >< a|,(X)|B >1]

And when I take the X of the Iz, then I will have alpha alpha, these are the A states, and this is
alpha 1. X 3. Now, you see this also is 0 and this gives me again af3, 1. operating on 3 gives me f8

only, therefore, this again gives me 3, therefore, this also will be 0. So, therefore,



_1 0 +th° 0+ 0

so the whole thing is 0.

So, similarly, when we calculate it we will see that p,5 is 0, p,, is 0 and we have this, the first

row, except the first diagonal element, all the three are the three elements are 0.
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1 YhH, 1,
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=2 <aBlap >+ L2 (< all (Wl >< I >}
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(f) Elements, py; = py3 =p24 =0

Now, let us calculate for the second row. We will calculate for the p,,. So, the p,,this is

YhH, 1,

T

1
922=Z<aﬁ‘1+

So,

il yhH, 1A
_Z<aﬁ|aﬁ>+ T [({< all,(A)]a >< BIB >}

H< ala >< B (X)1B >}

So, this gives me 1, this gives me 1, this gives me half and this also gives me minus half. So,

therefore, what happens here, this part is



_1+th 1 1
4 AKT [2 2]

I will have only this term remalnlngz. So, this term goes to 0. So, similarly, if you calculate it,

you will see that p,; in the second row andp,; and p,,, will be 0.
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yhH, I,
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And you do the same exercise for ps;, now it is Ba and Bahere. This one gives me 1 again, and

this gives I,|A|B - %, this is 1 1 this is 1 and this is 1, and this gives me half, so this will be

minus half, plus half and therefore, this vanishes, I will only have, I am left with only 1/4. So,

other 3 elements in the third row, ps;, p3,, P34, they will all be 0.
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yhH,l
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4 KT

_ 1 yhH,
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\/9 Elements, py; = pgz = pa3 =0

There fourth row, the p,, states if I do the calculation, I will have a 3, and 38 here, and this

1
= 2 < BBIBE >+ 2 [{< BILAIB >< BIB >)
H< BIB >< BILXDIB >3]
1 yhH,
4 A4kT

The other elements p4;, Py, Puz are equal to 0.
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So, therefore, what do I get? So, I have here, the all the elements listed here,

P12

P22
P32

Pa2

P13
P23
P33
P43

Pz P13 P
P22 P23 P 1
P2 P33 Pl 4
Piz Paz Pas

In general
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This actually if you remember, this was the I, operator for the two spins, right? And this is the

unit matrix. This is the unit matrix, unit matrix multiplied by L and this is the number of states,

this is basically the partition function.

In the generalized manner this is the partition function number of states, which is equal to the

number of states and here again it is a number of states and this is a constant, Y

constant K here and therefore, I can write this in a simplified manner,

1

P=E

(z

).

H,

that is the



I, is your matrix for the I, operator, therefore, rho is simply equal to this. So, if we knew this
density of state or the partition function, if we know this number of states here, and I, operator

you know what it is, we can simply write down explicitly the matrix representation of the density

operator.

So, I think we can stop here; this is the good time to stop for the calculation of the density

operator for the 2 spin-states.



