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Time evolution of density operator

In  the  last  class  we  have  seen  how  to  calculate  the  matrix  representations  of  the  angular

momentum operators in the basis of the eigen states of the individual spin systems. 

(Refer Slide Time: 00:44) 

We considered explicitly one spin system with I=
1
2

, and two spin systems both with I=
1
2

, two

spins labeled as A and X and we calculated the matrix representations of the operators Iz Ix and Iy.

And we also talked about the general  properties of the individual  spin states,  what does the

orthonormality mean and how it is used in the calculation of the matrix representations of the

angular momentum operators. 

We went through step by step and now we will continue this exercise and try and calculate the

matrix representation of the density operator, which is of crucial value for us in the description of

the NMR experiments. So, we had derived the expression for the density operator ρ for a single



spin I=
1
2

, we had calculated that the density operator can be represented in this manner, which

is 

where H 0 is the magnetic field. 

In  fact,  this  is  how we  actually  started  calculating  the  matrix  representation  of  the  angular

momentum operators,  plus we discovered here and we showed here that angular  momentum

operators  were  intimately  connected  with  the  density  operator  and that  is  the  one  which  is

actually going to tell us about the response of the spin system to various kinds of perturbations in

your NMR experiments. 

So, for the single spin we will write this density operator as in this manner, is it will be a two by

two matrix because the two spin states for a single spin are alpha and alpha and therefore, I will

have here ραα, ραβ, ρ βα, ρ ββ. The states here are the ket states and the states here will be the bra

states and I will care to calculate the matrix representations, the matrix elements ραα, ραβ, ρ βα, ρ ββ

. 
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Let us do that. So, ραα, explicitly, you write it as alpha here, 

and that is equal to, now,

So, now, this one does not give us anything, so I will have, I take out the  α  completely from

here, and then I will have alpha 1 alpha and that is simply αα . 

And then I will have here this part the α ,

then I will have this matrix element coming α∨I z∨α because Iz is an operator, I cannot take that

out, so this is the constant here. So, this I can take it out, so then I will have α∨I z∨α. So, this

gives me one because of the orthonormality. 

 

 

 



So, therefore, 

So, totally, Rho alpha alpha will become 
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Now, ραβ, so it is the same way, 

So, this now gives me 

 

 

 

 



And similarly, here this gives meα∨IZ∨β,  I Z∨β  gives me  −β, therefore, I will have  αβhere

and once again this will be 0. So, therefore, this total element will be 0. 
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Similarly, βα if I calculate, this will again give me ½ , this is β here and α  there, therefore, this is

1
2
βα will  be  0.  And  here  once  again  this  constant  being  the  same,  Iz on  α  gives  me  

1
2
α ,

therefore, they have βα , the βα  also gives me 0, therefore, this will also be 0. 
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Now, ββwill yield some non-zero value because as in the same way as the ααyielded, so β
1
2

 half

here and this gives me 

therefore, this total will be 
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So, put it all together so the matrix representation of the density operator is explicitly here the

diagonal  elements,  these  are  the  diagonal  elements,  this  will  be  non-zero  and  off  diagonal

elements are 0. Now, these diagonal elements are the same what we calculated on ραα and ρ ββa

and that is I can take this, separate it into 2 matrices here, so therefore, 

 

 

 



You recall the previous class that this was actually Iz operator for the single spin system and this

is the unit operator. So therefore, 

because if I take away the 1, one more 2 I have to take it out, then it will be Iz. So, therefore, they

simply once we know the matrix representations of the individual operators, one can straight

away this write these matrix elements in for the total density operator as well. 

But  here,  we  actually  from  the  first  principles  we  calculated  and  demonstrated,  how  this

expressions are obtained. So, this will be in a simpler form

ρ=
1
2 (
1 0
0 1)+

γℏ
2 kT

I z

So, therefore, if I want to write explicitly in a similar form, I can also write this as 

ρ=
1
2
I+
γℏ H 0

2 kT
I z

Here, I am actually representing the matrices of Iz and the matrix I. 

The I, 

I=(1 0
0 1)

this I is a unit matrix 1 0 0 1 and this is the Iz of the single spin 1 0 0 minus 1, right? So, this is

the way also one can write once you know the basic matrix representations of the individual

operators one can write the density operator also in that manner. 
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Now, that was for the single spin system. Now, let us do it for a multi spin system, you go a little

bit more because we always have to deal with multiple spin systems. So, if I have multi spin

systems, then I will have to consider the Hamiltonian in a more generalized form that it has the

 Hamiltonian is ℌZ, this is a Zeeman part of the interaction and this is the coupling interaction

which is the ℌJ. 

So,  ℌZ represents  the  Zeeman  interaction  and  ℌJ represents  the  J coupling  interactions.

However, under high field approximation that is because your magnetic field is of the order of

several Tesla's, right? So, therefore hundreds of kilowatts, so that is a huge magnetic field and

this ℌJ, this is in few hertz, okay. So, this is about coupling constant, this is about 10 hertz, 20

hertz and things like that and this is in megahertz. 

Several megahertz is the total interaction here it is in megahertz, and this is in several hertz,

therefore,  this  is a very small  quantity and often one can neglect this  for the purpose of the

calculation of the density matrix. So, therefore, explicitly for the two spin system AX, we will

 



write in this manner, this is 1 by, now n is the total number of states, right, the total number of

states are 

1
N

=
1

(2 I+1 )A(2 I+1)X

So, therefore, the total number of states will be the product of this. For example, in the case of 2

spin I=
1
2

, we had 2 states here and 2 states there, so therefore, it became 4 states. Therefore, in

that case it will be, it will 4 for the two spin system I is equal to half, this will be 4. and Iz again

will be the sum of the two operators for the individual spin states. 
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Now, so let us recap that here, 

If  A and X are spin half systems, I will have this 4 states as individual basis set states  α A α X,

α A β X, β A α Xand β A β X. So, once again I will write them as in the form of energy level diagram

here, if these ones are non-degenerate, then I will have these 4 energy levels, then I will have 1 2

3 4 as labels for this 4 individual states. 

 



This is the convenience, we have just labeled them in this manner, one can label it any another

manner also, but one has to keep the convention and maintain the same convention all through. 

(Refer Slide Time: 10:45) 

So, now the generalized form of the density operator or the density matrix for will be in this

form, matrix representation of the density operator will be 

So they will have a 4 by 4 matrix for the density operator. 
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Let us try and calculate these individual elements more explicitly. So, let us do for ρ11, the is, I

have, now I have dropped this  A and  X here because we have already seen that explicitly, for

simplicity I drop the A and X, but it is understood that they are there, this will be α A α X, α A α X,

but simplicity I have just dropped the A and X, we understand that they are there. 

So, now if I want to calculate this, so this will be 
1
4
(2 I+1)A, there are two states there, and for

the X also two states, therefore, this total number of states will be

Plus and these are now the  A states  α A α A and here are the X states, these are  α X α X,  Iz (X) is

coming here. Now, so this gives me 1 and what does this give me, this gives me half, right, this

gives me half, this is 1 and this is 1, this also gives me half, therefore, this is half plus half. So, 

 Therefore, I will have a total of 

 

 



So, this is the first diagonal element of the density matrix. 
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Now, we calculate ρ12, the row 1 2, this is the second element of the first row and this is 

1
4

 here as before and then αα , and here I have αβ . So, the first number, this gives me αα αβ here,

this obviously goes to 0 because orthogonality of these individual states and this 

And when I take the X of the Iz, then I will have alpha alpha, these are the A states, and this is

alpha Iz X β. Now, you see this also is 0 and this gives me again αβ , Iz operating on β gives me β

only, therefore, this again gives me β, therefore, this also will be 0. So, therefore, 

 

 

 



so the whole thing is 0.

So, similarly, when we calculate it we will see that ρ13 is 0, ρ14 is 0 and we have this, the first

row, except the first diagonal element, all the three are the three elements are 0.
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Now, let us calculate for the second row. We will calculate for the ρ22. So, the ρ22this is 

So, 

So, this gives me 1, this gives me 1, this gives me half and this also gives me minus half. So,

therefore, what happens here, this part is 

 

 

 



I will have only this term remaining
1
4

. So, this term goes to 0. So, similarly, if you calculate it,

you will see that ρ21 in the second row andρ23 and ρ24, will be 0.
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And you do the same exercise for ρ33, now it is βα  and βαhere. This one gives me 1 again, and

this gives I z (A )β→
1
2

, this is 1 1 this is 1 and this is 1, and this gives me half, so this will be

minus half, plus half and therefore, this vanishes, I will only have, I am left with only 1 /4. So,

other 3 elements in the third row, ρ31, ρ32, ρ34, they will all be 0. 
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There fourth row, the ρ44 states if I do the calculation, I will have a ββ, and ββ here, and this 

The other elements ρ41, ρ42, ρ43 are equal to 0.
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So, therefore, what do I get? So, I have here, the all the elements listed here, 

This actually if you remember, this was the Iz operator for the two spins, right? And this is the

unit matrix. This is the unit matrix, unit matrix multiplied by 
1
4

, and this is the number of states,

this is basically the partition function.   

In the generalized manner this is the partition function number of states, which is equal to the

number of states and here again it is a number of states and this is a constant, 
γℏ H0

kT
 that is the

constant K here and therefore, I can write this in a simplified manner, 

 

 



Iz is your matrix for the  Iz operator, therefore, rho is simply equal to this. So, if we knew this

density of state or the partition function, if we know this number of states here, and Iz operator

you know what it is, we can simply write down explicitly the matrix representation of the density

operator.

So, I think we can stop here; this is the good time to stop for the calculation of the density

operator for the 2 spin-states.


