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Welcome to the third class on NMR spectroscopy. In the last class we looked at resonance

absorption of energy by a spin system. Absorption of energy depends upon the RF, the power

that we apply and also the spin lattice relaxation time T1. There is a factor which we derived

called saturation factor. 
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And that is equal to 1+2 PT 1. This is the saturation factor. We showed that in the steady state

the population difference between the two levels is 

n'=
n0

(1+2PT 1)

Where, n0 is the equilibrium population difference between the two states. So if 1+2 PT 1 is

extremely large then n' will tend to 0 and then it will lead to saturation and there will be no

signal observed. 

In fact, I said that was the reason why Gorter missed the Nobel Prize. He chose a sample

which has such a large T1 value that even at very low powers, the signal was getting saturated

and he was not able to observe that. So therefore choice of the sample becomes important.



And here  P is the transition probability which in turn is proportional to the power that we

apply in the RF. 

We now go forward and ask, are there any further restrictions in the absorption of energy?

Some principles will have to be understood.  In other words, are there any selection rules for

absorption of energy?
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Indeed, there are some selection rules and this  comes as a result  of quantum mechanical

treatment of the interaction between the spin system and the applied RF. This is called first

order perturbation theory. 

And the P what we used earlier can actually be calculated using this first order perturbation

theory. We will not go into the details of this calculations. We will simply take this formula

which says 

P=γ2H 1
2
∨¿m'

∨Î x∨m>¿
2

Where two states  m ' and  m between which we are considering the transition of the spin

system. Here  Î x is angular momentum operator,  x component of the angular momentum. It

comes here as Î x because we have assumed that the RF is applied along the X-axis. If it were

applied along the  Y-axis then  Î y operator will come. But that does not matter so far as the

conclusions with the regard to the P are concerned.



And now to calculate this, of course one has to go into the theory of angular momentum

operators, we will not go into the details of that one. We will simply take the result which

says that this element which is called the matrix element here of the operator Î x between the

states m ' and m, this vanishes unless. 

|m'
−m|=1

What are  m ' and  m?  m are the azimuthal quantum numbers of the spin  I, we said  m  takes

value from – I…+ I ,2 I+1, values, for a given I. So if  I=
1
2

 , then we have m is equal to plus

half and minus half, these two states possible. So what is the implication of this? If I say

|m'
−m|=1

This implies only single quantum ∆m=±, transitions are permitted. Let us look at this in little

bit more illustrative manner.
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Let me write here ¿
1
2

 . I have two states, α and β. This is for m=
1
2

 m and m=
−1
2

. Suppose

I=1, then I have 3 states. Here  m=−1 ,m=0∧m=1. If,  I=
3
2

 how many states are there

here? 2 I+1is 4, therefore there will be 4 states. Notice all of them are equally spaced. The

energy levels are equally spaced. And here m=
3
2
, m=

1
2
,m=

−1
2

∧m=
−3
2

 



What is the implication of the selection rule what we showed just now? That the transition

between this is always allowed because here the  ∆m=±1. This transition is allowed. This

transition is allowed. ∆m=−1, for this, but this one is not allowed. So ∆m=−2, is also not

allowed. 

Let  us  look  here.  So  here  there  are  four  energy  levels.  We  can  draw  many  transition

possibilities here. This is, ∆m=1, is allowed. This is also allowed. This is also allowed. All

of these correspond to ∆m=−1.

But if you look here, this is not allowed, likewise this one is not allowed. And similarly this

one is also not allowed. So ∆m=−2 ,∆m=−3, is not allowed. These are the selection rules.

These are the selection rules for  RF induced transitions.  So we say when  ∆m=± 1, these

transitions are called as single quantum transitions. 

∆m=±2  are  called  as  double  quantum  transitions.  ∆m=± 3 are  called  triple  quantum

transitions. There is also, of course, ∆m=0which we do not come across here in this kind of

spin system. They will come later. Those are called as zero quantum transitions. Those also

will not be allowed by RF. 
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See the same thing is stated here. Transitions between  m=1∧m=−1 and vice versa is not

allowed, which is what I explained just now.
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Now if an absorption of energy happens, the energy should correspond to the actual value of

the energy difference. 
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If this energy difference is 

∆ E=h ν

Where, ν is the frequency of absorption then 

ν=
∆E
h



which is a single frequency. However it does not happen this way. It does not happen always

that absorption of energy occurs exactly one single frequency.
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It happens over a range of frequencies 
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And these contribute to what is called as the line-width. So you see here, the absorption of

energy spans a certain range of frequencies. Signal will have a shape like this and see this is

the central frequency at which energy should have been absorbed. 



But there is of course absorption of energy if the frequency is slightly different, is here or

here or here but of course the amount of energy absorbed will be different. So, therefore it

generates a line which has a width. And if I take at the half height of this line then this is

typically called as the line-width. What is the reason for this line-width? 

This again comes from quantum mechanics. There is what is called as uncertainty principle in

quantum mechanics which says that 

∆ E . ∆t ћ

This is the intrinsic principle which quantum mechanics defines. So we will have to follow

this. ∆ E is the uncertainty energy value of a state and ∆ t  can be taken to be the lifetime of

the spin in the state. 

A spin when it undergoes a transition from one state to another state, obviously its lifetime in

the particular state is changing. It has a well-defined lifetime and therefore it undergoes a

transition. So depending upon what is the lifetime of the state then your energy value is not

precisely defined. If this is extremely high, then this will be very small.  Then the energy

value will be very precisely defined. But if this is a small then this energy value is not very

precisely defined.  

Therefore there is a certain uncertainty in the energy which means absorption of energy can

take place at  multiple  frequency values.  So therefore in an ensemble of spins,  some will

absorb energy at one particular frequency. Some will absorb at a slightly different frequency

and so on. And because of that you get a line-width. What are the factors which influence this

line-width? 

(Refer Slide Time: 11:41)



I indicated here, for the 2 spins, for the 2 level system the α and the β states have a certain

width in the energy, have a certain width here for each of these states. And because of this

there will be a certain width in the frequencies absorbed or emitted. So that is what this leads

to what is, we called as the line-width. 
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What factors determine the line-width? We will list here some of the important factors. The

first  thing is  spontaneous emission.  This  is  a  very common mechanism for  line-width in

spectroscopy.  This  arises  because  of  interaction  of  electromagnetic  radiation.  RF  is

electromagnetic  radiation  with  matter.  This  is  a  very  general  quantum  mechanical

phenomenon. 



It depends upon how much is the strength of your  RF,  how many photons are there in a

particular volume of the sample? How does it interact with the matter? Depending upon that

you have spontaneous emission happening. And that means that it limits the line-width. It

limits the lifetime of the state and therefore the uncertainty in the energy and you get a line-

width contribution. 

However, this is extremely weak in NMR. One could calculate this for the given kind of

energies  we  use  and  the  given  kind  of  powers  we  use.  This  will  roughly  absorbed

10−20
∨10−23 something like that and therefore we can simply ignore it. This is not a major

contributor to the line-width. 

Width due to  spin-lattice relaxation,  we said earlier  that  there is  a  spin lattice  relaxation

which allows the spins to come back to equilibrium whenever there is a perturbation. So these

transitions are always happening. These are lattice induced, there are interactions between the

lattice spins and the spin system of your interest. Because of this, the energies are fluctuating.

And that limits the lifetime of the state and this contributes to the width of the line. 

Similarly  the  spin-spin  interactions,  within  the  given spin  system there  will  be  spin-spin

interactions which also cause fluctuations in the energy values. It cause transitions between

the  states  and  this  also  results  in  the  line-width.  Magnetic  field  inhomogeneity’s  effect,

different portions of the sample experience different fields hence absorb energy at different

frequencies. 

We noticed in our spectrometer we have the sample in a tube which is put in the center of the

magnet.  We assume all  the spins  in  your sample see the same magnetic  field.  Now this

depends upon how homogenous is your field. If your magnetic field is not very homogenous

over the sample volume, different spins in the sample experience different kinds of magnetic

fields and therefore their precessional frequencies are going to be different. This results in

width of the line. This is magnetic field homogeneity effects. 

There are other interactions which get averaged out in solution state spectra and we do not

wish  to  consider  that  here.  Overall,  considering  the  line-width  the  expression  for  P is

modified in this manner.



P=(
1
4 ) γ2H 1

2g (ν)

This are the factor which we introduced now to take care of the line-widths. So that, which

means the transition probability is slightly modified depending upon what the frequency is

and that shows up as the line shape function. This is called, g nu is called as the line shape

function.

(Refer Slide Time: 15:25)

Ok, now let us return to Larmor Precession. This we have already seen, Larmor Precession

happens in the presence of the main magnetic field;  the nuclear spins precess around the

magnetic field direction  H 0 with a frequency which is dependent on the magnetic moment

and the field. Now what happens when the RF is applied? How does it influence the Larmor

Precession? 

You notice here, if we are on resonance, consider that we are on resonance or we are slightly

away  from  the  resonance,  what  because  of  the  line-width  also,  line-width  we  already

considered, we have this  H 0up right along the Z-axis and we applied the RF, applied along

the X-axis. You could have applied along the y-axis also, it does not matter. But we consider

here the RF applied along the X-axis and it has a magnetic field which is H 1. Remember we

called our RF as 

RF=2H 1cos(ω0 t )

And the rotating component is H 1exp−iωt 



So when we are considering this along the H 1, along the X-axis, H 1 field, we have a H 0 field

here. There will be an effective field which is a vector addition of this and this. And the

effective field will be here. Now the spin system sees this effective field. Spin system does

not see only the H 0 field but sees the H 1 field as well. Therefore there is an effective field

which is in this direction. Therefore the spins will have to precess around this effective field. 

This is the cone. The cone which was here earlier now gets tilted to go like this. All the spins

are now on the surface of the cone described by this circle. So what is the implication of this?

The  magnetization  now  gets  tilted.  Because  effective  field  is  tilted,  remember  the

magnetization is along the magnetic field axis over a long period of time. Now this will be

tilted along this axis which means in this laboratory frame there will be certain component of

magnetization on the x or the y axis. 

Of course, there will be Z-axis component but there will be x and the y components. We call

this  x and the  y components as transverse magnetization.  And what  is the implication of

transverse magnetization? We said earlier,  when the system is at  equilibrium, there is no

transverse magnetization because all the transverse components cancel out because of the

hypothesis of random phases. 

Now by implication if there is a non-zero transverse magnetization, it will imply that some of

the spins here have acquired a sort of a phase coherence.  The ones which were all going

randomly like this. Now they have come together in a particular fashion, they come closer,

they can move together, this we call it as the phase coherence. The spins move together, then

it would mean there is phase coherence. And to that extent the cancellation will not happen.

There will be a transverse component of the magnetization.

So  therefore  generation  of  the  transverse  magnetization  implies  generation  of  a  phase

coherence among the spins in the ensemble. This has important implications as we will see

later. Therefore now we have x and the y component of the magnetization in the presence of

the RF. We also have z component of the magnetization in presence of the RF. 
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So to describe this motion, Bloch wrote a set of equations. He wrote a set of equations in a

phenomenological manner for the precession of the spins considering the effective magnetic

field that is given by this. We have the H 0 which is the field along the Z-axis. Then you have

the RF which is 

RF=H 1exp−iωt

Putting it together we have the H eff  (H effective). 

Then he wrote this equation 

dM
dt

=γ (M×H eff )

This basically represents a force which is experienced by the magnetization in the presence of

the field. This is a torque. Basically it represents a torque when the magnetization interacts

with the field. So he wrote this equation in a phenomenological manner. It tells you that rate

of change of magnetization is proportional to the cross product of magnetization and the H

effective, both are vectors here. 

Now M is a vector representing the total magnetization which has components 

M=M x ,M y ,M z

Where, M x ,M y ,M z are M component along the x, y, z directions. And H eff  consists of a static

field  H 0 which is along the Z-axis and the rotating fieldH 1exp−iωt , since it is rotating, it

continuously generates x and y components, oscillating x and y components. 



Put this in the more formal way, putting into consider the various components here, the same

equation is recast in this manner 

d ( i⃗ M x+ j⃗ M y+k⃗ M z )
dt

=γ ( i⃗ M x+ j⃗ M y+k⃗ M z )× ( i⃗ H x+ j⃗ H y+ k⃗ H z)

i, j, k are the unit vectors along the  X, Y and  Z-axis respectively. So typically you write a

vector in this manner taking into account the various components. 
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Now we take cross product of this without going into the explicit mathematics details there,

we will just write the end result. What is H x? 

H x=H 1cosω0 t , H y=−H 1sinω0 t , H z=H0

because this is the precessing field, H 1exp−iωt means it is a field which is going around in

the x y plane. So it generates x and the y components which are oscillating in time. 

So therefore the  x component varies as  cosω0 t and the  y component varies as  sinω0 t , and

taking in the consideration the sense of the rotation, we have put here the minus sign. So 

H x=H 1cosω0 t , H y=−H 1sinω0 t , H z=H0

So expanding that previous equation, you get explicit expression for the M components of the

magnetization. 

d M x

dt
=γ (M yH 0+M zH 1sinω0 t )



d M y

dt
=γ (M zH1cosω0 t−M xH0)

d M z

dt
=γ (−M xH 1sinω0 t−M yH 1cosω0 t )

It is interesting to see that where the x and the y components have the dependence of the H 0

here, because it leads to the precession, these are precession-related, Ok and then the  M z

component appears here, whereas the M z here depends on the x and the y components only

on this side and the M xH 1sinω0 t∧M yH1cosω0 t, these are the two components of the RF

field  along  the  x and  the  y axis  respectively.  Notice  here  the  relaxation  effects  are  not

included. 

This is simply the  RF is applied and the  H 0 is the field and there is no relaxation effect

because relaxation is happening. The relaxation happens to change the  z component of the

magnetization and relaxation must also happen for the x and the y components because if the

spins are having a certain phase coherence at a particular point in time, this phase coherence

will not last forever. 

It will slowly change as the system evolves and therefore there will be decay of this phase

coherence. Therefore there has to be some kind of a time constant to characterize this. 
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So therefore once again, Bloch modified this equations to include the relaxation effects. He

wrote 

d M x

dt
=γ (M yH 0+M zH 1sinω0 t )−

M x

T 2

d M y

dt
=γ (M zH1cosω0 t−M xH0)−

M y

T2

d M z

dt
=γ (−M xH1sinω0 t−M yH 1cosω0 t ) –

(M ¿¿ z−M 0)

T 1
¿

This represents the deviation from the equilibrium value which is  M 0. This represents the

transverse component of the magnetization created by the application of RF. 

And notice here we have a different relaxation time here. This is called T2.  T2 is called as the

transverse relaxation time and T1 is called as the longitudinal relaxation time because this has

to do with the z component of the magnetization. These have to do with the x, y components

of the magnetization. And therefore these are called as transverse relaxation time. Sometimes

they are also called as spin-spin relaxation time here T2and this we will discuss later. 
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Ok, now to solve these equations it is a long effort. However we make some simplifications

in this expressions by going into what is called as the rotating frame. Because we observe

sitting on the RF, we make a measurement sitting on RF, with respect to the RF therefore if

we go into the rotating frame and look at the magnetization components how they behave and

that will give us the greater insight into the behavior of the spin system as, as time passes. 

If we make this transformation here, we define a new axis x’, y’, Z-axis remains the same. We

make a transformation here. 

M x=u cosω0 t−¿ v sinω0 t ¿

M y=usinω0 t−¿ v cosω0 t ¿

This is basically a coordinate transformation. u and v are the components of magnetization in

the rotating frame parallel and perpendicular to the RF direction. 

If the RF is applied along the X-axis, we are sitting on the RF and what is a component of the

magnetization on the direction of the  RF? And that we call  it  as  u and the one which is

orthogonal to that, we call it as v. So y’ component is v, the x’ component is u’ and there is

angle between them is ω0 t because it is with this frequency the RF is moving. 
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The consequence of this is, the expressions become very simple. You get three expressions

for u, v and z. Ok this is algebra; of course we will skip this algebra here. Those one can work

it out. 
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So at steady state, most important thing for us to look at is the steady state solutions of this. 
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At the steady state all derivatives will have to vanish. 

du
dt

+
u
T2

+ (ω i−ω0) v=0

dv
dt

+
v
T 2

−(ωi−ω0) u+ γ H 1M z=0

d M z

dt
+

(M z−M 0)

T 1
¿

−γ H 1v=0 ¿
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Once you put in that, you get expressions for 



u=M 0

γ H 1T2
2
(ωi−ω0)

1+T 2
2
(ωi−ω0)

2
+ γ2H 1

2T1T 2

v=−M 0

γ H 1T2
1+T2

2
(ωi−ω0)

2
+γ2H 1

2T 1T 2

M z=M 0

1+T2
2
(ωi−ω0)

2

1+T 2
2
(ωi−ω0)

2
+γ2H1

2T1T 2

These are all proportional to the frequencies here. ω i is the frequency of precession and ω0 is

the  frequency  of  your  RF,  the  u is  now  proportional  to  this  expression,  as  indicated

proportional to the power amplitude of the RF and proportional to the T2 value and there is a

factor here, γ2H 1
2T 1T2We will see what it means. And this factor is common in all of these.

And M z represents the z magnetization. 

How does it recover to equilibrium as a function of time? And in this case, of course, we are

talking about their magnetization in the rotating frame. Ok, so therefore we have now got the

solutions of the equations of Bloch in the rotating frame. These result in the description of

resonance phenomenon. 

We will go into the details of the line shapes, how they allow us to measure the line shape in

the next class. And we take forward from there with regard to the relaxation phenomenon. So

we will stop here. Thank you very much. If you have any questions, keep it and we will try

and answer those.


