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Density matrix description of NMR – 3

In the last class we started with a rigorous description of NMR, a quantum mechanical

description which is called as density matrix description of NMR. We tried to derive an

expression  for  the  density  operator  starting  from  the  basic  principles  of  quantum

mechanics, that how we make a measurement and what is the meaning of measurement in

quantum mechanical terms, that is when we measure the expectation value, calculate the

expectation value, it represents a measurement. And we also said that we have to take an

ensemble average to represent the measurement. 
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So, as in the end we came up with this expression for the so called density operator, 

 



and this is an operator here. So, rho is an operator and this represents the total number of

states, the eigen states. And that depends upon the spin system, what we might have,

whether it is 1 spin system or 2 spin system or 3 spin systems and so on.

And what is the value of the I? For most purposes, we will be dealing with I=
1
2

 systems.

And we also said we will represent the Hamiltonian by the interactions and by and large

it is represented by this simple expression here, 

this is the z component of the angular momentum, this is Iz operator.

Now, since the  density  operator  is  intimately  connected  with the  angular  momentum

operator, so we have to look at the properties of these operators in some details. Now,

here, I would like to mention that, since this chapter is going to be quite intensive with

regard  to  the  operators  and matrices,  matrix  representations,  angular  momentum and

things like that.

It may be a good idea to take a small digression and spend sometime on the properties of

the  spin  spades  for  the  benefit  of  those  who  did  not  have  sufficient  exposure  with

quantum mechanics, operators and so on and so forth. Therefore, we will go slow here

and try and calculate this individual, will introduce these concepts clearly and explain

from the first principle, how one can calculate these various elements.
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So, now this is the same equation which we wrote earlier in the first class, that any state

is represented by wave function, the wave function is written as super position of the

various states, these are so called basis states, they are for my basis set, all the Um’s are

the eigenstates or form a basis set and this is the super position of all the basis sets and

you have the Cm(t)’s, these are the coefficients which contribute to the super position.

In a simpler notation, we simply write it as summation Cmm and this summation goes

over all the states of the spin system. 

So, if as I said this goes from, m goes from 1 to n. The spin-states satisfy this identity.

This identity also we used last time. However, let us come back to this identity and try

and show how this comes and try and prove this. So, we used this identity in the previous

class and this m is the one of the eigen states or the element of the basis set and with this

summation runs over all this m’s. 

 



Let us take one of these elements, this one which is written here, I take this here and I

will  show you that this  is  the actually  an operator.  So, this  if  I operate  on the wave

function

 This operator as it is and then for the ψ (t), I write this. Now, just instead of m here, as a

index of summation, I use n, it does not matter, it just runs over all the states.

Whatever index I use here, it runs over the all the states. So, 

Now, this Cn’s are numbers, so then Cn’s are numbers, these are now operators, therefore,

I can take this entire part outside of this operator term and then I put the summation here,

instead of putting it here, then I say then the  Cn comes here, then I put the same thing

back, this m, m, this is the ket, this is the bra and this takes an element with the another

ket here n.

Now, these are the expression gets simplified into this. Now, you remember we also said

that these states, the elements of the basis set, these are orthonormal.  So, what is the

meaning of orthonormal? That this bracket here, this element is either 0 or 1, depending

upon whether m=n or m≠n. 

This   δmn=1 ,n=¿or  it  is  equal  to  0 if  n≠m.  Therefore,  this  summation,  once  again

running on various N’s here,  C and  m,  δ nm,  this  will  simply become equal to  Cm  |m,

because for all other n’s which are not equal to m, this is 0, so only 1 element of this

survives and therefore, you have here Cm |m.
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Now, I take instead of this only particular element which I took last time, I take the whole

summation. I take the whole summation of all this, so either for you notice, you notice

here that this is essentially projecting out one particular state here from the entire way of

function, right? This was ψ (t),  here, and eventually I have got here only one state with

its coefficient Cm |m. 



Therefore, this operator, this is now, you understand this is an operator, this operates on

the way of function psi of t and gives me only one particular state, therefore, this is called

as a projection operator, this projects out the particular state m out of this psi of t. 

So,  now I  am taking  the  entire  summation  of  all  these  operators,  m and  m,  all  the

operators, m going from 1 to n, so this is the same here. And this operator giving on ψ (t),

give Cm |m and this summation is basically psi of t again, we have seen that this is in the

definition. 

Therefore, this equation if you see, if I take out psi of t from both sides here, then it

simply reduces to this equation, this is the identity which we actually used earlier and we

have proved it  explicitly  here for the benefit  of those who are not familiar  with this

principles. But these are generally used routinely in or various kinds of calculations in

quantum  mechanics  and  quantum  chemistry,  and  therefore,  it  is  very  important  to

understand how these things come.

(Refer Slide Time: 08:36) 

Now, let us do explicit calculations with regard to the angular momentum operators. We

said the density matrix is very intimately connected with angular momentum operator Iz

and we will also deal with other angular momentum operators in due course, therefore, it



is important to describe the spin-states and the representation, matrix representations of

the angular momentum operators. 

Let us start with 1 spin with I=
1
2

. In 1 spin, how many states do we have in the presence

of the magnetic field? Well there are anyway 2 states, in the presence of the magnetic

field they are non-degenerate,  they have separate energy levels.  In the absence of the

magnetic  field  they  will  degenerate,  but  nonetheless  the  two states  are  present.  And

because,  we  said  Iz is  the  quantized  state  and  we  have  only  two  possibilities  there,

therefore, we have 2 states alpha and beta and these are the spin-states.

And these are also the Eigen functions of the Iz operator as we see here. Now, what does

the properties of these states that is indicated here, in this matrix element  αβ  goes to 0,

whenever  I  say  αβ  actually  in  the  conventional  nomenclature,  those  who have  used

quantum mechanics  the integral  forms actually  this  ket,  this  is  called  the ket,  this  is

actually wave function ψ and this side which is there which is the bra, this is the complex

conjugate.

So, therefore, when I write like this, it is essentially the integral psi star psi. So therefore,

in the case of the spin states, we simply write this as the bra here and the ket here, and

therefore, this is orthogonal and therefore this is 0. All these basis, elements of the basis

set are orthogonal in nature and if I do that with the similar states, αα=1

βα=0, ββ=1. Therefore, we say these states are orthonormal because this is normalized

to unity and this individual matrix element, these are 1 here and their crossed terms are 0,

and therefore, these are orthonormal basis sets. There are only two states, right? These

two states are orthonormal. 

Now, we also saw earlier that Iz which is operating on the state alpha if it is m, and this is

the m value is, this we define in the very early stages of this course, that this is the m

value, this gives me half. I z|α=12|α , I z∨β=
−1
2

∨α , because these are the m values. 



For the β the m=
−1
2
α  and for the α  the m=

1
2
α , therefore, this gives me ½  and - ½ , and

you see the same state is back here, therefore, these are the eigenvalue equations and

alpha is eigen state of the Iz operator and beta is also an eigen state of the Iz operator with

the eigen values ½  and - ½. 

Now, this I x∨α, this we can take it for granted, although this can be proved later. This

I x∨α=
1
2
∨β. So,  I x∨α=

1
2
∨β,  I x∨β=

1
2
∨α. Notice here, the  α’s  Ix operator converts

the α  state into the β state, and it converts the β state into the α  state. In fact, this is what

was used when we described the selection rules for energy absorption by the RF. 

The RF was applied along the X axis and the Ix operator was coming as a perturbation by

interaction of the RF field with the magnetic moment and then the Ix or the Iy operators

coming there and because of the change in the state here, then ∆m=± 1 selection rule was

derived as a result of this, and that becomes conspicuous again, when we will actually try

to calculate this matrix representation of this, Ix and Iy operator.

Likewise, if I do I y∨α=
i
2
∨β  and I y∨β=

−i
2

∨α . Once again this  α  state is converted

into the β state here, and the β state is converted into the α  state and therefore, these are

not eigen value equations, because the Eigen function is not written. There is a change of

state and but with a certain kind of a result here as a coefficient.
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Now, I calculate the matrix elements of the  Iz operator. The matrix elements of the  Iz

operator meaning what, so I have this sort of calculations I have to perform.  Iz in the

middle,  α  here α  here,  α  here β here,  β here α  there,  β here and β a is there, so this 4

elements  represent  a  2  by 2 matrix  of  the  Iz operator.  So,  this  is  called  as  a  matrix

representation of the Iz operator in the basis set of the two states aα  and β.

You have the two states α  and β here, this form the ket individually and this form the bra

individually, once α  and once β. And here the ket once α  once β, therefore, I have a 2 by

2 matrix here. Now, you notice I z|α=12|α, right? So, the 
1
2
∨α and α , thus αα=1, this is

what we saw in the previous slide and therefore, this results, it gives me ½ . 

Now, I z∨β=
−1
2

∨β, as we saw in the previous slide. So, if I take -½   out then I have the

αβ=0 here,  and  that  αβ=0,  because  these  are  orthonormal.  Similarly,β∨I z∨α,

I z|α=12|α, therefore, the matrix relevant will be ½  βα=0. So, and here, , I z∨β=
−1
2

∨β,

so therefore, I will have -½  outside, then I allow the ββ and the ββ=1, therefore, this is

equal to -½ .



So, if I put this 4 elements in the matrix, then I will get here 

So, basically this will become the matrix representation of the Iz operator for a single

spin I is equal to half.
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Similarly, we can do that for Ix operator. Now, Ix operator, if you remember,  Ix converts

α→β, it gives me 
1
2
β. So, the 

1
2
β means I take away ½ out, then I have the αβ=0. So,

therefore, I know if you see Ix β, so Ix β gives me Ix 
1
2
α , then αα=1, therefore, I have

here  half.  This  was  exactly  the  same  thing  what  we  used  when  we  were  actually

calculating the selection rules with the perturbation magnetic moment interaction with the

RF field and the operator part was Ix there.

 

 

 



So,  you  see  the  difference  of  ∆m=±1,  right?  So,  therefore,  that  is  how we  get  an

selection  rule of  ±1for  RF induced transitions,  basically  it  comes from this  sort  of a

calculation. Similarly, β∨I x∨α  if I do, the I x∨α converts α  into the β state, I get a 
1
2
β,

so ββ=1, so I get a ½ here. So, here Ix| β goes your 
1
2
α , and therefore, βα=0.

So, therefore, if I write it in the same manner here, so αβ  here, αβ  here, these are the two

kets and these are the two bras, so Ix is in the middle so I will have 4 elements here, 

so therefore, this becomes the matrix representation of the Ix operator.

So, similarly,  if I do for  Iy,  I y∨α ,  I y∨β and these was now, notice here,  I  have a I

coming here, these are imaginary, so, I will have 

So, this will be the matrix representation of the Iy operator for a single spin ½ . Now, if

we eliminate this ½ , we remove this half, the matrices which are present for the Iz, Ix and

Iy, so they are simply 2 by 2 matrices.

In 

 

 

 

 

 

 



I z=[1 0
0 −1]

For 

I x=[0 1
1 0]

for 

I y=[0 −i
i 0 ]

and these three 2 by 2 matrices are called Pauli-spin matrices. For, single spin and these

are the ones which you actually calculated and these are called as Pauli-spin matrices.

Okay.
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Now, let us turn to 2 spins. So, two spins consider  A and  X,  I A=
1
2

,  I X=
1
2

. Now, the

individual spin states of these two spins are α A, β A and α X , βX . Now, for generating the

basis set for the two states, we take the products of this individual spin states. This was

done in the second chapter when analysis of spectra was described, when you wrote the



Hamiltonian,  you  tried  to  calculate  NMR  spectra  using  the  quantum  mechanical

principles, this also was done in a very generalized way.

So, for the two spins we calculate the product states for the two spins. These will be

α A α X, α A β X , β A α X, and β A β X. These are the 4 states which constitute the basis set. So, 2

by 2, two states for this and two states for this, so therefore, I will have here 4 states. I

represent this 4 states in the energy level diagram like this, I have, I have labelled this

α A α X state number 1,  α A β X as state number 2,  β A α X as state number 3,  β A β X as state

number 4.

And now, the angular momentum operator, consolidated angular operator for the two spin

system if the Iz or the Iq or Ix or the Iy will be the sum of individual operators. So, Iz here

for 2 spins, will be I z=I z (A )+ I z(X ) , Ix for the 2 spins will be I x=I x (A )+ I x(X ) and Iy for

the two spins will be  I y=I y (A )+ I y (X). So, therefore, in abbreviated notation we write

like this, Iq=Iq (A )+ I q(X )where q=x , y , z.

(Refer Slide Time: 20:19) 

Now, what are the properties of the spin-states? So, this will follow from the general

properties of the alpha and the beta states. If I label this now, I labelled with my 4 states

as 1 to 4, so here therefore, I take the products of the individual states, ij, then this is



So, the 4 states which are there, so these are orthonormal states of the two spin system.

ij is called the δ ij. So, therefore, how many matrix elements will be there for the two spin-

states? Since, there are 4 states, so 4 ket states and 4 bra states and therefore, this will be

4 by 4 matrix for the  Iz operator and likewise, for the  Ix and the  Iy operator. So, it will

consist of these elements, 

and these are the matrix elements we have to calculate.
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Let us illustrate this, how this can be calculated. So, let us calculate I z
11. I z

11 is the one state

is α A α X, right? So, therefore, in the bra here I have the α A α X, and the Iz operator here is

¿ I z (A )+ I z (X )∨¿ and the ket again is the 1 1, 1 state and that is  α A α X. Notice, each of

these operator operates only on its own spin-state and it does not operate on the other

spin-state.

For example, I z (A ) will operate only on the α A, it will not operate on α X . So, therefore, if

I am calculating the matrix element with the respect to I z (A ), I can take out the α X  state.

So, this is what we shall do. Now, if I have this two states here, now α X , I can take a note

if I am calculating  I z (A ) here, so I separate out these 2 into separate calculations, so in

one case I have the I z (A ), in the other case I have the I z (X ) here.

So, if I have I z (A ) here, I keep this α A here, then the I z (A ) and keep this α A here, and this

α X , this α X  come out here as a separate entity, α X , α X . Similarly, plus α X , I z ( X ), α X , that

is if I am looking at this operator, then α X α X these two are taken here and these  α A α A

come out separately here. Now, because of the orthonormality of this, this is equal to 1

and likewise, this is also equal to 1.

And what does I z (A )  give me or operating on α A? It gives me 
1
2
α
A
. Now, therefore, 

1
2
α
A

, half we take it out, α A α A, that gives me 1 again and therefore, I have a ½  here coming

from this term. This is 1 and this gives me half. Similarly, this gives me half and this

gives me 1. Therefore, ½ + ½  this gives me 1. Let us do it for I z
12. I z

12 is α A α X, here, this

I z remains the same and here I have the state number 2 which is α A α X.

So, I do the same as I did here before, so I have here α A∨I z (A )∨α A those are this, these

states are taken, α  states and α X  and βX  come out here. That because Iz operator does not

operate on the X spin-sates, therefore, this α X β X come here. For the second one, when I

am putting I z ( X ) here, I have to use the X spin-states only, therefore, I have here Ix, α X

and then you have the βX  here, and the 2α A α A come out.



Now, notice here because of the orthogonality  this  term gives  me 0 here,  α X β X is  0

whereas this gives me half, on the other hand  here this gives me 1 and this gives me 0

again, because this is 
1
2
−βX and α X β X gives me 0. Therefore, both these terms actually

become 0 and we vanish. And likewise, I z
13 and I z

14will be 0.
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So, let us do the same thing for I z
22.  I z

22 is, now we have the two state here and the two

state here, α A β X, α A β X, and ¿ I z ( A )+ I z ( X )∨¿. So, this is α A∨IZ (A )∨α A which is easily

followed from here. Then I have this βX β XX. Here, βX∨I z (X )∨βX  and α A α A. Now, what

do I get from here. I z (A ) and α A gives me half and therefore, and this is 1, α A α A is 1 and

therefore, I get a half here. Now, what do I get here,  I z ( X ) operating on  βX  gives me

−1
2
βX.  

And therefore,  
−1
2
βX βX=1,  α A α A=1, therefore, I get a -½ , these two terms will then

cancel,  I  will  have a  0 here.  So,  therefore,  this  the second term  I z
22 will  be 0.  Now,

similarly, we can do this calculation for all the other elements of the matrix, and we will

find that in the second row, I z
21, I z

23, I z
24 and in the third row I z

31, I z
32, I z

33, I z
34, that means all

the 4 terms and in the fourth row I z
41, I z

42, I z
43, these will all be 0. 

So, therefore, in the first row also we said I z
11was non-zero and other three terms were 0,

so earlier.  Now,  I z
44 also  we can  calculate  and this  is  in  the  same manner  when we



calculate it, this is β A, βX , β A βX  here andI z ( A ) I z (X )and this terms, so this will turn out to

be -½ , -½ and this will be -1 because I z (A ) on β A gives me -½ and I z ( X ) and  βX  also

gives me -½, so therefore, both will be minus half, minus half and this will be -1.
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So, totally therefore, if I see, list all of these elements here, you can see that in this  Iz

matrix I have only these two elements which are non-zero and all the other elements are

0.  Therefore,  for  the  two  spin-states,  the  two  individual,  I=
1
2

 spins,  the  Iz matrix

representation will be simply this. 
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Now, for the Ix, we can do the same thing. Ix also will have these 4 elements here and now

let us try and calculate for some of those. So, if I x
11, this is α A α X, I x (A )+ I x(X ), and α A α X

here. So, we do the trick as before, so α A∨I x (A )∨α A and α X α Xand this is α X∨I x (X )∨αX

α A α A. Now, notice here Ix operating on alpha gives me β, that is this here, whereas this

remains the same.

And Ix operating on α  gives me β so, therefore, I have α X  and βX , and notice these ones

are 0, this is 0 and therefore, this will be 0. 
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So, similarly, I x
12 if I calculate, I have here α A α Xfor the 1, and α X β X for he 2. So, here I

have, therefore, the same expansion,  I X (A )|α A>¿α X ¿ βX>+¿α X|I X (X )¿βX>¿α A∨α A>¿

Notice here this fellow actually gives me 0,  α X β X gives me 0, right? And, what about

this? 

I z ( X ) operating  on this  is  equal  to  1,  Ix operating  on  βX  gives  me  α
1
2

alpha  half  α X

therefore, α X α X=1and then I get a ½  therefore, I will get a 0 plus half and that is equal

to half. So, similarly, we can calculate for these elements, I x
13, I x

21, I x
24, I x

31, I x
34, I x

42, I x
43, all

these will be equal to half and the remaining elements will be 0.
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So, thus your Ix representation will look like this, all the 4 elements will have a half here,

1 1 here, 1 1 here, 1 1 here and 1 1 here and all the other elements are 0. You can do the

same exercise with  Iy and then it will turn out that you have half here, it will be very

similar to this, except that instead of 1 you have this I elements. 

So, you will have -i -i, -i -i, here. In the upper triangle you will have the -i’s and in the

lower triangle you will have i i and i i here. So, this will be the matrix representation of

the  Iy operator  for the two spin-states.  I  think we will  stop here,  thank you, we will

continue with this discussion in the next class. 


