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Let us continue to the discussion of density matrix we wrote the equation for the density

matrix mnth element of density matrix as by the following equation 

ρmn=
1
Z
δmn e

(
−En
kT )

where En is the eigen value of the state n and δmn is Kronecker delta and for m=n this will be

the diagonal element. So, diagonal element and this then will represent the populations. Off

diagonal  elements  are  0  at  equilibrium,  at  thermal  equilibrium.  This  will  be  0  m≠n at

equilibrium. And we also wrote in the previous class an operator form of density, for the

density operator we derived an equation.



(Refer Slide Time: 1:39)

We wrote the density operator, equation for the density operator 

ρ=
1
Z

+
K
Z
I z

Where Iz is z magnetization and this Z is the partition function, and this represents the number

of states. Now we also wrote earlier when we make a measurement, let us say if we want to

measure  x magnetization  then  we  also  derived  earlier  that  we  have  to  calculate  the

expectation value of this operator which represents the x magnetization and that is equal to

¿Tr {I x ρ }

We have derived this equation earlier. 
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Let us take example here for one spin-system. I=
1
2

, we have, we derived this expression in a

matrix representation of the Ix operator is equal to

I x=
1
2 (
0 1
1 0), I z=

1
2 (
1 0
0 −1)

And therefore, the density operator for this 

ρ=
1
2
1+
K
4 (1 0
0 −1) ,Where , K=

γℏH0

kT

So, now putting this together you calculate

Iρ=
1
2 (

0
1
2
−
K
4

1
2
+
K
4

0 )ThereforeTr {I x ρ }=0

Therefore there is no x magnetization in the equilibrium state. This also we have said earlier

when  we  defined  a  thermal  equilibrium  off  diagonal  elements  are  0  and  so  this  is

mathematically shown here that the x magnetization is 0 at equilibrium condition.
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Now suppose, for example you are dealing with a non-equilibrium state and that often comes

when you do various kinds of manipulations. You can create a density matrix which has off

diagonal elements which are non-zero. In earlier cases you notice that the density matrix had

off diagonal element 0.

So, now we consider a matrix 

ρ=(
P1 a
a P2)

so we said these are the populations here density matrix has off diagonal elements are the

populations and we somehow consider a situation where the off diagonal element here are

non-zero but are equal to a. Now, what will be the consequence of this? 

Now if I want to calculate the trace again of 

Tr {I x ρ }=
1
2 (0 1
1 0)(

P1 a
a P2)

so this will turn out to be 

¿
1
2 (
a P2
P1 a )=a

Now you see there is the trace is non-zero. Therefore, there is net  x  magnetization. In this

situation. Therefore, the density matrix represents the complete situation about the system.



You have the diagonal element which have populations and the off diagonal elements will

represent the transverse magnetization.

Same thing will happen  y as well. So you may create various kinds of situations and how

does these things occur, how do these things occur? This will happen as the result of various

kinds of manipulations you might do with your experimental sequence, then it will become

necessary  for  us  to  actually  calculate  the  density  operator  and  then  we  can  make  the

measurement.

So, the density operator calculation that will be dependent on time, if you are making a pulse

sequence where lots of pulses are applied and this go as function time along the time axis. So

therefore, we need to consider and calculate the evolution of the density operator with time. 
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So,  how do  we  do  this?  This  will  require  framework  where  we  can  calculate  the  time

evolution of the density operator. So this is what we are going to discuss in the next few

minutes. So for understanding the performance of multiple experiments, it becomes necessary

to understand the time evolution of the spin-system through the pulse sequence and this is

best done by calculating the time evolution of the density operator. 

So for this we begin from the time dependent Schrödinger equation, see this time dependent

Schrödinger equation describe how there state evolves with time and that is equation is given

in this manner. 

Where,  is the Hamiltonian describing the system containing all the interaction and  ℌ ψ is

dependent on the time. So evolution of psi tells you how the system is evolving with time.
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So to achieve this let us write the wave function psi as before as superposition of various state

function eigen states the Cn(t) are co-efficients and un are your eigen states. They constitute

an orthonormal basis set as we defined before. Now, let us substitute this in the Schrödinger

equation we get 

 

 



Now it takes matrix elements of this which is the states uk.
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So that means you multiply on the left you take this 

Now, so therefore, this is equal to now 

Cn(t) is a constant and therefore we can take that out of this to the move it to the left and k

will come inside so we will have <k| | n>ℌ . So 

So therefore, this differential on the left hand side. 

 

 

 



Now on the left hand side notice that there will be only one non-zero element the summation

goes over all n, but this n and k are orthonormal therefore, this will survive only when k=n.

Therefore, there only one element here 
d ck
dt

. Therefore, my summation will disappear 
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So now, we also know the basic definition of the density matrix, so 

this was the basic definition of course the ensemble average is implicit here though ensemble

average  for  the  coefficient  is  implicit  in  this  equation.  Now on the  right  hand side  you

differentiate this explicitly, you get

Now these are, remember coefficient these are time dependent of course and therefore, we

can move them around. 

 

 

 



Now looking at this, we can calculate what 
dm¿

dt
 is, we derive this equation for  d Ck /dt . So

therefore,

 Now I want for the complex conjugate, so if I want to take the complex conjugate here at I

take complex conjugate here at right hand side as well. 

So when I do that it becomes 

And this element will be h you have to represent because you have to turn them around this

way. So therefore, this will become ℌnm that is instead of k here, m here from the other side

dm star will be m will come on this side, n will come on this side. Beacuse that is what

happens when you take complex conjugate on this of the matrix element.
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Substituting this then we get 

 

 

 



That was the substitution of those equations here, so this will now be equal to

So now the summation is taken out here, put it together for the entire equation you have put

the whole thing in curly bracket here and you have a summation  n here. Now we notice

interesting  that  has happened here with the summation  n we have got this  element  here,

summation n this is ket and this is bra this runs over all the n. 

Similarly, here also we got this ket n and bra n so this summation runs over all the n. And you

remember from previous classes that summation n this sort of a operator this is projection of

operators sum overall the projection operators is equal to 1. Therefore, this element vanishes.

Similarly, this element vanishes and the summation also vanishes. Therefore, 

So therefore, I have here

now what is this here? This is called as the commutator between the two operators rho and h.

It is typically written in this manner rho H m so therefore, if I combine this, if you compare

this two equations, then I will have 

This  is  called  as  Lioville-von  Neumann  equation.  This  is  most  important  equation  for

calculation of all the density matrix elements of any experiments. So this is the fundamental

equation, where the time evolution of the system is described and you calculate elements of

the density operator as you carry out various manipulations with your spin-system. And in the

end when you actually are ready to measure you take the expectation value with regard to the

Ix to the Iy operator and that gives you the measurement. 

 

 

 

 



So therefore, this is crucial equation here and we have to see how this equation can be solved

and this there are standard methods also, this we will not much go into the detail solution,

how it will solve? But we will take the solutions of this as they appear and we can use this

solution to calculate the evolution of the density operator as a function of time.
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Now, if the Hamiltonian is explicitly independent of time in that Lioville equation then the

solution of this is easily written in this manner, we are not deriving this explicitly from that

point. But this equation can be verified by explicit differentiation 

So ρ (0 )means this is time t=0. And these two operators on the left and the right this describe

the evolution of density operator as a function of time. 

So this can be easily verified by explicit differentiation of this this is independent of time and

these are the two three which actually dependent on the time. Therefore, we can differentiate

it and reorganize the element and then we will find that it satisfies that Lioville Neumann

equation.

Now using this definition let us try and calculate the off diagonal elements of the density

matrix so what we do, we take the matrix element here rho in the middle and then m here and

m here. This is basically 
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Now,  how  do  we  calculate  these  elements?  Now  you  noticed  earlier  we  defined  with

exponential operators, what is the result when you operate on particular state, if you have

eigen value equation then

where En is eigen value of the state n. So for the Hamiltonian , for the operator ℌ h then you

get this eigen value En for the state n. Therefore,

Similarly, 

Now, if I take the complex conjugate of this, what is the complex conjugate then what I get

on the left hand side? I get here instead of the ket I get the bra this here and this one will now

 

 

 

 



get the minus sign, e
−i
ℏ H t  . Essentially this will be operating on the left. And that is equal to m

and you take complex conjugate here so this state will come here so this is e
−i
ℏ Emt. 

So you put that definition here, because now you want to operate this one on this side and this

one on this side. So this operating on this side gives me e
−i
ℏ En tfor this now is number this one

operating on this side gives me this number 

m  e
−i
ℏ Emt. So therefore, I take out these two numbers out then, I get  e

i
ℏ (En−E¿¿m)t¿,  En comes

from here and -Em comes from here the and the state m and ρ (0) stays here and n stays here.

So therefore, the off diagonal element of the density matrix. Now, we noticed this is energy

difference between the two states between the states n and m. 
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So now, if I write 

 

 

 



So now this is in variance, these are in hertz frequencies. So therefore, if I put that in here

Now we also know that it 

and ensemble average. 

Now going back to the earlier definition of these coefficients that they have an amplitude and

the phase so we write in this manner esemble average is written in this way 

these are  the some phases,  some numbers  which represent  the  phases.  Now, if  these are

random by the hypothesis of random phases so these elements this average will go to 0 in the

case of equilibrium state.

However, if this is non-zero then non-vanishing of ρmn implies existence of phase coherence

between the spins in the states m and n in the ensemble. And thermal equilibrium all phases

occur with equal probability which implies that  Cm
¿
=0. So therefore, at equilibrium this off

diagonal elements density matrix are 0 and at if there is deviation from equilibrium then you

will have off diagonal elements non- zero. And we showed in the very beginning that if there

is off diagonal element of the density matrix which is non-zero. That amounts to transfer

magnetization Ix or Iy.

The appearance of Ix or Iy therefore implies a phase coherence here between the spins in the

states m and n. So therefore, transverse magnetization therefore gets connected to the phase

coherence between the spins. So anytime you have a transverse magnetization we say there is

phase coherence between the spins. And decay of the phase coherence amounts to decay

transverse magnetization 
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So, now putting that thing here at equilibrium this equation has to go to 0 and now this is

never 0 sorry this one is never 0, this is an oscillatory function, so if this function has to be 0

then it is this one which has to go 0. So that means this element is 0 at equilibrium this

element is 0. So if we create a non-equilibrium state where in this element is non-zero. Then

we have created off diagonal element which is non-zero so any non-vanishing off diagonal

element implies a non-equilibrium state.
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So therefore, extending to multiple spin-systems and a variety of situations a very generalized

density Metrix can be written in this manner. In the most general case you have rho of t

which is written as we have the populations on of the n state here suppose you have total of n



states here. You have the populations along the diagonal P1 P2 P3 P4 so on and so forth. And

on the off diagonal elements you have these elements coefficients. 

This and then we have oscillatory function  iω12 t  between this represents energy difference

between the states 1 and 2. And this is that coefficient which we saw in the previous slide and

likewise  this  coefficient  keeps  varying from element  to  element  here  and this  oscillation

frequency also is changing with element to element. 

Because  energy levels  are  changing so if  you have so many energy levels  there  will  be

oscillations of different types. And one can create all these kinds of phase coherences which

means if I have the element which is non-zero here it would mean that I have created the

phase coherence between the states 1 and 3. Here there is face coherence created between the

states 1 and 2. That is by C12 term, C13 term.

And this is by the 1n element, this is the but the first state and the  n state and this is the

oscillation. This time evolution is given by this and this actually depends the non-equilibrium

situations where you have created a phase coherence between the sates 1 and n.

So, this will be the complex conjugates here, so we have C21 P2, so and it will be written in

the same manner C23 and so on so forth, C2n and here we get we have written as omega n1, if

you notice here. So therefore, if I want to write it as  ω1n to represent this then I will put a

minus sign here and then it will become consistent what we said before. 

So, when I said n1 n2 n3 this remains the same then they have populations here. Therefore, the

density matrix has complete information about the spin-system. It carries all the information

through the pulse sequence,  if  you generate  pulse sequence spin echo for example  if  we

consider or just a Fourier transform experiment with a single pulse what all happen, how

many if there are many frequencies how they all become  magnetization which is observed in

 



the FID. All of this can be calculated. You have to take the trace of observable with this

density operator and it will tell you what is all the information present in the spin- system and

which can be used for measurement and interpretation of your results. 

So I think this is the crucial stage and we can stop here and evolution of the density operator

calculation will be required for interpretation of any experimental sequence we may design.

So we will stop here and we continue with this density operator, density matrix calculations

in the future classes, we may also think of some simplifications in the calculations, how to

arrive at these results in a much simpler form. Those things will come in due course. 


