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Data Processing in Fourier Transform NMR

Let us continue our discussion with Fourier transform NMR and its various aspects, we were

talking about the various practical aspects of Fourier transform NMR and we have reached up

to some aspects and one of the important aspect which we had started discussing was so-

called folding of signals. You recall that the FID has points because we have collected the

data in the digital form and the sampling theorem dictates how fast we should collect the data

how  the  things  should  be  digitalized  and  what  should  be  the  time  in  between  the  two

consecutive of points and that is called as the dwell time and this is determined by what is our

spectral width where we have kept our offset.

So, assembling theorem tells us the next frequency tell us that the sampling rate should be

equals to 2ωmax, where ωmax is the maximum frequency in your spectrum, I mean ωmaxnot a W

max, ωmax is the maximum frequency in your spectrum. 

(Refer Slide Time: 01:40)

So, the sampling theorem therefore possess its difficulty that one has to know the frequency

arrange in the spectrum, even before you collecting the data.

So, where to place the offset, what is the spectral range and what is the maximum frequency

in that spectrum with respect to the offset is something one has to know, however this is not



easy to know, what happens as a consequences of this is that some artifacts appear in your

spectrum, let me try and explain that little bit here and this is shown in this particular slide in

a picturized way. So if you have a spectral width chosen from here to here, we can see that in

my arrow that is from here to the blue this line indicates what is the spectral width you had

chosen and if your frequency is kept offset is kept here and if there is a line somewhere

outside  here  then  it  will  fold  into  a  spectral  region  into  this  and  this  is  in  the  case  of

quadrature detection.

(Refer Slide Time: 02:44)

And the same thing let me try and explain, so if you have a this is your carrier frequency and

your spectral region is here you have lots of lines here, here and here and here and here you

think this is your spectral region, so therefore to excite this uniformly what you do is you

shift your carrier frequency to the center of the spectrum here, this is what we set is called the

offset, okay?

Now if this is properly chosen, then of course all of your signals will be inside the region

what you have chosen this is the spectral region what you have chosen from here to here if

the offset is properly chosen and you have chosen the spectral width which is determine by

the sampling rate your dwell time what you have given then there is no issue but suppose you

have a signal which is somewhere here which is not covered in this region which you have

chosen. In that case this fellow will actually fold into your region of interest in some manner

and that is called as the folding of the signal.

How does that happen? This happens as a consequence of digitization theorem which we

discussed earlier and we will look at that once more. Of course the noise also we will fold



from here to here, it  has its another consequence which will also discuss in the next few

minutes, okay?

(Refer Slide Time: 04:10)

So what is the consequence of the digitization theorem? Sampling rate is wrongly chosen, as I

mentioned to you earlier, we placed the offset somewhere and we chose your spectral width

wrongly and then you collect  the  digitized  data  in  this  manner  and do it  digital  Fourier

transformation then it is consequence of this digital Fourier transformation that you get lines

to fold.

Let us look at that little bit more carefully, if you have an FID which is digitally collected like

this and you do it digital Fourier transformation, you remember from this theorem that you

get a spectrum which is given by this kind of an equation, this is 

1
τ
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∞
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So, n is this is running index is the n here, now you notice we have got the series if spectra, F(

ω¿ is your spectrum F(ω¿ is your spectrum and you get as many sets of such spectra as there

is there are real values.

However always we chosen=0, if n is equal to 0 then you have F(ω¿. So this whole range

from here to here is 1 F of omega and here from here to here is another F of omega, and what

is the range of this? This will be 1 by tau the distance between here to here will be 
1
τ

 that is



from this center to his center it will be 
1
τ

 because each of them is F(ω¿ is separated by 1 by

tau, if n goes from 0 to 1 you increment by ω−
1
τ

  that means a whole spectrum is shifted by

1 by tau region, likewise if n=2  we shift it by 2 and so on.

So therefore there will be whole range of peaks, you will have spectra F(ω¿, n=1 will give

you one spectrum, n=0 will give you one spectrum,  n=−2 will give you one spectrum, -2

will be here, +2 will be here and so the whole range of frequency you will have in your

digitized data Fourier transform data.

However of course we always choose one particular spectral region by using what are called

as the filters. So when you do a filtering process it eliminates all the others and you pick up

only this much region of the spectral width. So this shaded area here is a spectral width. Now

if you have wrongly chosen your spectral width or your offset, then you may have a signal

which is somewhere present here. 

So this is not covered inside your spectral region, so what will happen? So this peak will

appear from each of this region, from this F omega also there will be peak that comes here,

the one which actually belongs to here will appear here, the one which actually belongs to

this one will appear here and the one which belongs to this one here will appear here, this is

an additional signal which is not covered in your spectral region.

Now therefore you will have a peak here which is coming from this spectral region n is equal

to plus 1 peak will appear in this region and this is therefore called as a folded signal. Now

depending upon what sort of a detection system you chose of course there will also be folding

of noise, okay? So this first of all explain how the folding of signals happen? This is the

consequence of digitization of your FID. 
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Now there will also be folding of noise, suppose your spectral region is from here to here and

you put your offset in this region, suppose you put your carrier offset here and your peaks are

here, okay? And this is so called the single channel detection you put the carrier at the one

end of the spectrum but as a result of a Fourier transformation of course you will generate

both positive and negative frequencies and those negative may appear in this area but that

does not matter to us because that does not interfere with your any of your signals.

But this peaks will not fold because you have used a filter which goes like this and that will

eliminate this and it will not this peaks will not matter to you but then this of course this noise

which is present here which will fold in to this area, this peaks are resonated so the noise will

be added into this area so the noise will be doubled up, whereas the signals are not disturbed,

you will have the signals here, the signals to noise ratio will be different then what happen if

you put your carrier here in the middle? 

If you put your carrier in the middle, this is your region of interest and if you put the carrier

in  the  middle  the  positive  and  the  negative  frequencies  are  distinguish  in  the  case  of

quadrature detection, this is single channel and this is quadrature. So if the carrier is put here

your positive and negative frequencies are distinguished, positive and negative noise will be

distinguished, therefore there is no additional noise folding into a spectral region. 

As a consequence if you do a quadrature detection your signal to noise will be enhance by a

factor of √2, √2 enhance maintain signal to noise for quadrature, this is the consequence of

folding  of  noise  different  types  of  holding  of  noise  in  the  case  of  single  channel  and

quadrature. In the case quadrature there is no folding of noise then single channel there is a



folding of noise and therefore there is loss of signal to noise factor of √2, okay. So, this is the

folding problems and we are now going to see other parameters which are specific to Fourier

transform NMR.

(Refer Slide Time: 09:57)

The next parameter is the acquisition time, how much data you collect acquisition time is

define for which data is collected in FID. So here is FID so this goes from starts from here

and you collect the data all the way up till here, right? What happens if you go beyond this?

Of course there will be no signal here and there will mostly noise which is coming here. So

therefore  you don’t  want  to  collect  noise as a  typically  therefore  you are limited  by the

relaxation of the signals in as to how much data you will collect, this is the time axis here if

you remember, therefore this is dictated by transfer relaxation term of your spin system.

So why about three times the transfer relaxation time, this signal would have decayed almost

to 0, if you collect any data beyond that you will be basically collecting noise. Therefore, you

don’t want to collect any data beyond that, up till that time only you will collect. So this time

is called as acquisition time, total from here to here is called as acquisition time.

Let us be more quantitative in this sense, now suppose you have collected n data points and if

the time interval between two consecutive data point is τ then your total acquisition 

tacq=Nτ ,

where , τ=
1

2ωmax



ωmax is the maximum frequency in your sampling in the spectral region.

And therefore 

tacq=
N

2ωmax

This is for single channel, right? In the single channel we have kept the carrier at one end of

the spectrum therefore the maximum frequency is the entire spectral region spectral width.

In the case of quadrature you keep the carrier  in the middle  as explained to you before,

therefore the spectral width is suppose it is SW, then SW=2ωmax because you have put the

carrier in the middle, there are positive and the negative frequencies you have omega max

positive side and omega max on the negative side therefore there is a total spectral width

therefore is equal to 2ωmax.

The sampling rate will be 
1

2ωmax

,so therefore your acquisition time 

tacq=
N

4ωmax

why is it 4 factor here? Your sampling rate is  
1

2ωmax
, yes but how many data points you

collect? When you collect data you actually collect real and imaginary points in quadrature,

okay? They are collected simultaneously, if you are collecting a total of N data points you

collect half of them as real points and half of them as imaginary points.

So therefore  you can see here if  you are collecting  N data  points  this  is  for  the Fourier

transformation and you collect  
N
2

 points as real points and 
N
2

  as imaginary points, that is

you collect x magnetization and y magnetization, you have 
N
2

  points for each one of those.
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So in quadrature you collect 
N
2

  real points that is if you called this as y magnetization and

you collect 
N
2

 imaginary points and if you called this as x magnetization, okay? So therefore

your acquisition time 
N
2

 into 
N

2ωmax
and therefore that becomes 

N
4ωmax

, okay.
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Now the next parameter that is related to this is so called digital resolution. Suppose your FID

is represented by this equation 

f (t )=S0e
iΩt e−Rt

this  Ω is actually your sample frequency, we collect here only let us say there is only one

frequency what is the result of the Fourier transformation here?

Now you remember the spectrum also will be digital in nature, therefore there will be certain

number of points in your spectrum as well, if you have collected N data points in your FID

then  Fourier  transformation  of  this  FID  will  result  in  two  components,  this  is  the  first

component is the real component and the second component is the imaginary component, this

is  given by this  equations  here and this  imaginary component has results in a line shape

which is like this.

And there is a results in a line shape which is like this. This is your absorptive spectrum and

this  is  dispersive  spectrum and the  total  N point  which  you have  collected  will  now be

distributed between these two spectra. So you have 
N
2

points to present your real data and N

N
2

 points to present your imaginary data and we pickup generally only the real points because

it reduce levels in an absorptive line shape.

So remember both the frequency information’s which are entirely present in both the real

points and he imaginary points just that they have a different phase relationships, and we will

be needing this at some other point later but for presentation we generally chose absorptive



line shapes which is  indicated here,  N data  points which are collected in the FID which

consist of 
N
2

along the X axis along the Y axis and at that Fourier transformation will result in

N
2

 points  for  the  real  part  of  the  spectrum and  N
2

 points  for  the  imaginary  part  of  the

spectrum.

So this  is  the  consequences  of  the  Fourier  transformation  as  I  indicated  here,  you see  i

indicates here the imaginary component and this has the line shape which is like this, this has

a  line  shape  which  is  like  this.  And  what  is  R?  R=
1
T 2

,  this  is  relaxation  rate,  okay?

Transverse relaxations rate and that is multiplying your FID, how fast your FID is dictated by

this factor and that appear as a line width in your data later on.

If this is equal to if R=T 2 then this is roughly will be equal to e to the minus t and then it is

called as matched decay or we will see later that it is also generally used such a kind of a

multiplication later on to called what is called as a match filter, that will come in a next few

minutes, okay.
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Therefore your digital resolution will be defined in this manner, you are in the single channel

direction your total spectral width is

Dres=
2ωmax

N
2

=
2.2ωmax

N
=
1
tacq

In the case of quadrature detection also it happens in the same manner, now we have 2ωmax is

your spectral width and you are collecting 
N
2

 data points there and therefore this is also equal

to 
1
tacq

. So this is what is explained here quadrature detection, 
N
2

real points and 
N
2

imaginary

points  are  collected  simultaneously  and  dwell  times  is  twice  that  at  single  channel  at

detection, since the largest frequency is half of the spectral width. So in both cases digital

resolution  is  inversely  proportional  to  the  acquisition  time  and  we  have  to  optimize  the

acquisition time to get maximum signal to noise and maximum resolution.
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The  next  point  to  consider  is  signal  averaging  and  pulse  repetition  rate,  we  say  signal

averaging is easy in the case of Fourier transform NMR because you can improve you collect

the data for a very short period of time and you can repeat this process so you can increase

your signal to noise ratio. 

This is schematically indicated here, you have particular relaxation delay and you apply a

pulse acquire the data and repeat this relaxation delay here again, apply the pulse acquire the

data same thing continues several times. So each one of them is called as a scan, so from here

it is a scan 1, here to here scan 2 and here to here scan 3 and so on and you add all these

FID’s these are all individuals FID’s of scan 1, FID of scan 2, FID of scan 3 all these are

added and you fully transform at the end, so this is the signal averaging process.

Now the question is, how much relaxation delay one should give? Because we want that

magnetization should recover back to equilibrium or should it we will see in a few minutes

and after that you reach a signal data collection so, what is the best value of relaxation delay

one should chose or the Tp from here to here capital Tp, how much is the value of the Tp one

should chose and what are the constraints in deciding on this parameter? 

Digital calculations have been done because in the end we actually reach a steady state here

when though the repetition the several times every scan has to be identical to the previous one

and then we called the as a steady state. You it in every scan you get the same kind of the

signal and then that is the steady state signal in the repetitive experiment.



(Refer Slide Time: 19:56)

So,  when you do this,  one  can do a  calculation  we will  not  going to  the  details  of  this

calculation,  this has been done when the equilibrium or a steady state is reached, the  Mx

magnetization after each pulse is given by this equation, this is 

M x

+¿=M 0sin β {
1−E1

1−E1cos β
}¿

M 0 is the equilibrium magnetization, this is the maximum magnetization, sin β where β is a

flip angle what you have apply, we say we have apply a pulse. 

Now what should be the flip angle of the pulse? Should it be a 90˚, 30˚, 45˚what it should be?

So this is the question one has to optimize, and then it is proportional to 

E=e
(
−T p

T 1
)

E1 is related to Tp and longitude in the relaxation time T1 or the spin lattice relaxation time T1.

Maximum amplitude is obtained for a an optimum flip angle which is given by,

cos βopt=E1

when  you  match  this  condition  you  get  maximum  signal  to  noise  ratio.  So  that  is  the

optimization one has to do, so therefore you will see depending upon what is a value of,

E=e
(
−T p

T 1
)



 you do not necessarily have a β of 90˚, we do not necessarily required 90˚ flip angle, a detail

calculation will show you what is dependence of the βoptimum on the T1 relaxation time or the

ratio of 
T p

T 1

.

And this is indicated here, you plot here M x /M 0as a function of flip angle, okay? For various

values of  
T p

T 1

. So 
T p

T 1

 is 0.01 and  
T p

T 1

. is 0.1, 0.25, 0.5, 1, 2, 3, 5 and 10 and this is the 10

which you give a Tp which is 10 times T1 value at this particular curve here and you notice for

this the flip angle is 90˚. So after you apply the 90˚pulse which you have intersecting all

along, you give enough time for the magnetization to recover back to the equilibrium which

is along the Z axis and then you will get the maximum signal to noise ratio.

However, if the T1 is very long then you will have to wait for a such a long time before you

actually apply the pulse, so if  T1 is let  us say 10 seconds then you have to wait  for 100

seconds in between of two pulses in between two scans and that is actually not necessarily

economical from the point of your spectrometer time or signal to noise ratios per unit time.

So, and here is a plot, for example if you are having 
T p

T 1

 this curve if you take this is 0.01 so if

the T1 is very long, then if you apply Tp which is 
T p

T 1

=0.01 then you do not need a 90˚ flip

angle, you will get a maximum signal to noise ratio when the flop angle is this much only 15

degrees, okay? This is 15 degrees this may be of 10 degrees if you got this red curve 
T p

T 1

=0.1

then you need you get this one, you get a maximum signal when you are using approximately

30˚.

However, notice that you do not get the maximum signal here, this is the maximum signal per

unit time, this is the best one we will get, okay? So therefore the signal averaging will depend

upon what is it you want get for the maximum signal intensity in your spectrum, how much to

optimize, okay?
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And this same curve if plotted in the different style your plot the βopt verses 
T p

T 1

 and you can

see here for very large T1’s you need to have actually optimum value of flip angle is given by

this manner, so you have 
T p

T 1

is very small then your optimum flip angle is here and 
T p

T 1

is very

long then you have an 90˚ flip angle, okay?

So  therefore  this  takes  this  sort  of  a  shape  in  your  experimental  setup,  this  have  to  be

optimized so that you get best signal to noise ratio per unit time in your spectrum, okay. 
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Now, the next thing is the data processing in Fourier transform NMR. The number of data

points  in your FID is  restricted  as I  mentioned to  you before because to  signal  to noise

considerations, there is no point collecting data after this stage because there is only noise

there, therefore you offer end up truncating your FID at this point, you have collected these

many points.

Now if I do the Fourier transformation of this data this truncated FID then I get a signal like

this which will have some wiggles like this, there are small small wiggles at this point and

that is I mean this is not wiggles here actually this is a line shape is not very good because

you have suddenly truncated FID here, you have got this problem.

Now to improve this digital resolution what one does is you add artificial points you add

some additional zeroes here, this is called as zero filling, you add some additional points here

this don’t have a noise this are just zeroes. So instead if you collect it 1024 points here for

example, you add another 1024 zeroes here, therefore your total number of points become

2048 if you add more of course you will get more points, essentially this is to improve your

digital resolution not the inherent resolution.

So your number of points per  hertz  in you spectrum will  be better,  that  is  called digital

resolution. So if you do that now if you add zeroes then your Fourier transformation then you

will get the same thing but you see your digital resolution is improved, your signals are better

represented in this spectrum. However, you are getting some wiggles here by the side of each

signal.
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And there is more exclusively indicated here you have truncated FID with zero filling the you

get this wiggles here, these are the form of sink or the 
sinx
x

 wiggles appearing on either side

of your lines and this is not desirable.

So therefore what one has to do? We have to get over this problem, we have to get over this

problem and this is done by what is called as apodization or window multiplication or it is

also called filtering digital filtering, okay? So there are various way one can do it, so there are

various function one uses to multiply your FID, and we will show you few of those examples

here.
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So the first thing that one could do is multiply by an exponential function which is of this

form, window multiplication, digital  filtration or all the three term means the same thing,

okay?  Different  times  we  use  different  terminologies.  So  you  multiply  an  exponential

function, exponential function is given by this manner 

λ (t )=e
t

tmax

So you have FID truncated FID with zero filling, you multiply this exponentially decaying

function which goes like his this all the way till the end of the your FID and then you will get

spectrum which is looking like this. So this is the result of multiplication, if you notice this

certain the termination here is removed and you get smoothly going FID here and it comes 0

at this point nearly 0 and this results in a cleaner spectrum all those wiggles which were

present here have vanished.

But you noticed one more thing as a consequence of this your line resolution which were

present here has disappeared or rather it has reduced, so it causes the line broadening. So the

lines get broaden by an amount 

∆ ν=
(T 2

'
+tmax)

(π T2
' tmax)

So this is the price one has to pay for improving the appearance of the spectrum in terms of

the removing of the wiggles by the side of each of the lines, okay.
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Then you have other functions, the next function which is commonly used is cosine function

when you do the cosine function you multiply your FID by such a kind of a function. So this

will be a function which adjusted in such a way that you start from here the 0 point is here

and it will slowly come over and come to 0 at this point, okay?

So you multiply by a function essentially you apply the function with a certain frequency in

other words the wave has a certain frequency or it has a certain shape so that it start at 0 here

and comes to 0 at this point, so that is the last point and once you multiply with such a

function then your FID becomes like this is smoothly going to 0 at this point, the wiggles has

gone and also there is not much loss in your resolution in your spectrum therefore this is the

optimally used multiplication and by enlarge one uses this sort of a function to improve here

signal to noise ratio or digital resolution as well, okay.

(Refer Slide Time: 29:04)

Sometimes we want to use a function of a different type which is called as a the sine bell

function, the sine bell function has a this sort of a formula this is 

λ (t )=sin (φ+
πt
2 tmax

)
This was the same as before take as the cosine but no add here a phase this is the phase, so

now you see this phi if it is equal to pi by 2 this becomes the same as cosine function but

putting this phase allow you different possibilities.

Now suppose you apply phi is equal to 0 and then it is a total sin function that means the sin

function is 0 at time t is equal to 0 therefore this function will go like this and come down and



then comes to 0 at this point. So this is your wave this is your sine wave which is applied for

multiplication.

So when you do this you get significant enhancement in the resolution in you spectrum but

you also get distorted line shape, you get many negative peaks here you get each line have

some kind of a wiggle like this and you have distorted line shapes, if you use phi is equal to

30 degrees then it is kind of a shifted cosine, so you start from here so it is the you don’t start

from 0 but you start from here so you signal to noise is sacrificed as much but you have

improved resolution  but  still  you have some of  this  line  shape  distortions  you get  some

negative peaks which is present here.

Phi is equal to 60 produce the peaks like this and phi is equal to 90 is the same as the cosine

function which were shown in the previous case. 

(Refer Slide Time: 30:41)

And one more function which I want to show you this is called as the Lorentz Gauss this

function has this sort of a formula is

λ (t )=e
( t
T 2

¿−
σ 2 t 2

2 )

σ is a parameter which has to be adjusted for a given t max and an estimated T2
¿.

So when you multiply your FID with such a kind of a function so your FID looks smoother as

and it comes to 0 this point and when your Fourier transformation you have a reasonably

good  signal  to  noise  ratio  and  resolution  in  your  spectrum  digital  resolution,  therefore



combining  with  zero  fillings  and  multiplication  by  suitable  functions  you can  get  better

signals to noise ration as well as better resolution in your spectrum.

So  this  are  typical  features  and  we  may  called  this  as  cosmetics  of  data  collection  and

processing and that is what is practically used and one has to optimize this parameters for

better signal to noise ratio and better resolution in your spectrum, okay? So with that we

come to close this session and we will continue with the data processing and other aspects of

Fourier transform NMR in the next class, thank you.


