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What we want to discuss today is what we started discussing the previous day. It is coupling
in AX systems and we are going to handle this using perturbation theory. So we go back to
our old friend, the AX system. When I say AX I do not mean halide of element A. I mean two
protons with different chemical shifts, σA and σX. What we’ll try to do is we will try to arrive
at the answer that we know already. We have already discussed what happens when there is
no coupling and when there is coupling between two protons with different chemical
Shifts. All we will do today is we’ll use perturbation theory and try to understand why is it
that we get the picture that we got earlier. It’s as simple as that. So today’s discussion is really
very simple. 

Then tomorrow when we come back we ask another question. When we take A and X we said
A couples with X, X couples with A. Instead of X if I have another A, A2, say CH2 protons of
ethanol. We never consider coupling between them, does that mean they don’t couple? If so,
why is  it  that  they don’t couple or is  it  that  they couple but it  does not show up in the
spectrum? That is something that we will end our discussion in this course with tomorrow.
There  was  another  topic  that  I  wanted  to  discuss  and  that  is  the  general  discussion  of
everything ranging from AX to AB but there, you cannot use perturbation theory; you have to
use variation method. 

The good thing about what we discussed today and tomorrow is that you don’t have to study.
You only have to be attentive in class and then you understand we are not using any new
concept whatsoever. So let’s begin. 

So  since  we  are  going  to  use  perturbation  theory,  we  know  that  we  have  to  write  the
Hamiltonian as the unperturbed Hamiltonian plus we will  restrict  ourselves to  first  order
perturbation so the first order correction to the Hamiltonian.

Okay, how do you write the wave function that we will see. In fact, we are going to work
only with the unperturbed wave functions; we don’t talk about perturbed wave functions at all
because all  we are trying to  do now is  we are trying to work out what are the energies



corresponding to each of these states before and after coupling that is perturbation. And I
think you can tell me what is the expression for the first order correction term to energy. What
is the expression for first order correction term to energy? Yes, ψn, okay, then I’ll write n here.
Then H(1) ψn. Anything else? Same, not two on one, you are right. You are right if it’s two on
one then we are talking about a transition, I’m not talking about transition here. I want to
determine the energy of the state that is arisen out of coupling that is perturbation. But my
expression here is not complete because first of all, let us not forget that we will work with
unperturbed wave functions. 

Remember, when we try to -- this is the beauty of perturbation theory. Everything changes;
energy changes, Hamiltonian changes, wave function also changes. But then all changes are
small. So when we want to work out the first order correction to energy that itself is a small
quantity, there is no need for us to worry about what is the perturbed wave function. We can
get  away  working  with  the  unperturbed  wavefunction  because  the  terms  involving  the
perturbation terms of wavefunction are really very small and therefore, they’re neglected. But
I also have to complete this. 

This is the expression for first order correction to energy. Does it ring a bell whoever had
forgotten? I hope you have you now remember. That being said, let us now write down the

Hamiltonian for this AX system. What is the unperturbed Hamiltonian? -γB0(1- σA). Since I
am talking about AX, I’ll write A and X. It’s just that later on when we talk about X, Y, Z
components  don’t  t  get  confused  between  that  X.  (1- σA)  IZA-γB0(1- σX)IZX.  Here  let  us
remember that I have to write X. I’ll write X for the nucleus and I write x for the
Coordinate. Okay, so this is my unperturbed Hamiltonian. What is the correction term we said
for coupling? hJ, now what I will do is I will write JAX just to remind ourselves that we are
dealing with the AX system, we are talking about  coupling of  A with X,  divided by ћ2.
Anything else? IA.IX, and  as we know when we take the dot product of two vectors or two
operators we can just write it like this. IXA.IXX+IYA.IYX+IZA.IZX. So this is what we have to work
with essentially, and let us not forget what the wave functions are. What are the
Wavefunctions; ψ1. Ψ10 is fine, what is ψ10? 

We are talking about nuclear spins and we are talking about proton. So what are the only two
wavefunctions that are there for each; ∝ and β, and as you know lowest energy one is
∝∝. So I’ll write  it like this a little different from what we wrote earlier; ∝A∝X, then I
think it’s easier to understand. Okay, what is ψ2?  βA∝X. What is ψ3?  ∝AβX.  What is ψ4?
βAβX. Question?

Of course, these are all unperturbed wavefunctions. Are we okay with the wavefunctions? I’ll
not even write the 0 if you are okay with that. Are we okay so far? Not written anything new. 



Now one thing that we need to now understand is see, we know very well what happens when
Iz operates  on  ∝ or  β, don’t  we?  Say, Iz operating  on  ∝? What is  it?  What is  Iz

operating on ∝? What do you get? What? I thought that there is somewhere we
know. What do we get when Iz operates on ∝, ∝ spin? Yeah, 1/2 ћ multiplied by something?
Multiplied by  ∝ , it’s an eigenvalue  equation. Is it right or not? It’s just MS; it’s an
eigenvalue equation for the Z component of angular momentum. Okay, what happens when IX

operates on -- I’ll write this one as well. Iz operates on  β what do you get?  Β. ћ/2, is it
right? That means ∝ and β both have the same eigenvalues for Iz. –ћ/2.
That is why ∝ is called up-spin and β is called downspin. One of the eigenvalues is ћ/2, the
other eigenvalue is -ћ/2.

What happens when IX operates on ∝? What happens when IX operates on β? Iy operates on
∝, Iy operates on β, what do we get? Do we know the answers to these? Yes. 0, we don’t get
0. Do you know what we get? I just write it for you. IX operates on ∝ to give you ћ/2. Β. So
it is not an eigenvalue equation anymore. It’s not an eigenvalue equation anymore. IX operates
on β to give you again  ћ/2. ∝,  not an eigenvalue equation. These comes from what are
called spin matrices. We usually in chemistry courses, we do not really study spin matrices
and all. So this is one of the few things that we are going to take extrametrical in this course.

Then Iy operates on ∝ to give you I ћ/2. β. Iy operates on β to give you - ћ/2.∝. So as I
said for that you need to understand relativistic quantum mechanics. So that is not something
that we do in any chemistry course. So we are just going to take this -- I mean you can search
Wikipedia, you will get a little more of the answer. Wikipedia has this discussion on spin
matrices, but whether you will be satisfied with the answers and you see, again you’ll take
something extrametrical. So better not lose our sleep, this is what we’ll use extrametrical. 



Okay, ok so now we have all the material that we need to start discussing the problem of AX
system with coupling and without coupling. What happens when H(0) operates on ψ1? What
do you get? What is ψ1? ∝A∝X. So you get – γB0(1- σA)IZA operating on ∝A∝X. Whenever I
try to write that X as a small x, please correct me. - γB0(1- σX)IZX ∝A∝X . 

Okay so far so good. Now let us make the operators operate. Iz will only operate on ∝A l and
not on ∝X. When it operates on ∝A Iz operating on ∝A, do you get? You get ћ∝A,/2. Here what
happens? IZX does not operate on ∝A it operates on ∝x. Again, from there you get ћ∝x,/2. IZX

operates on ∝X, ћ/2. ∝X. 

What is the expression then? What can I take out? I can take out ћ/2. I’ll  take -ћ/2 out. -ћ/2 –
okay, I’ll  take ћ/2 out,  no issue.  γB0(1- σA),  what do I  get  there,  ∝XBA. It’s okay. My
wavefunction was βA∝X,  I  got to be confused. So you don’t have worry
about that. So I can take ћ/2 common, I can take γB0(1- σA) -- this I cannot take
common. What do I have left inside, (1- σA) but that (1- σA) is multiplied by a minus (-). So
(σA-1).  I  can  write  like  this;  (-1+  σA)  and  then  what  do  we  have,  (1-  σX),  whole  thing
multiplied by βA∝X.

So what is the eigenvalue? What is the eigenvalue now? This -1 and 1 they cancel each other.
You are left with ∝A-∝X. So I can jump one step I hope and write E2 unperturbed is
equal to minus -ћ/2γB0(σA- σX). Do we agree with this? E2(0) is -ћ/2γB0(σA- σX). 

Okay with that? Now what will happen if I now go to 3. Ψ3. What is ψ3? ∝AβX. So what do
you get from here? Here instead of minus you get -ћ/2∝A and here, instead of ћ/2, you get
-ћ/2 βX. So what is the expression that I get? Same magnitude reverse sign. So again I can
write E2,3

(0) is -+(-ћ/2γB0(σA- σX)). Do you have to remember all this or can you work it out
yourself? You can work it out yourself; it will take no more than five minutes. All right, so
please do not remember this expression. Do not remember any of these expressions. The only
thing that you need to know is what is the Hamiltonian. Are we okay so far? 



What we have been able to do is we have been able to work out the energies of the four
unperturbed levels. So I am not drawing to scale, of course. This is your ∝A∝X, βAβX, βA∝X,
this is ∝AβX. 

We have been able to work out the energies of these four levels without coupling. So if you
remember the picture that we have shown you earlier, we have shown you the first half. Now
when we bring in coupling, we’ll get the second half and we’ll see how the energy levels go
up or go down. Before that are we clear up to this? Is there any question? If there is then this
is the time to ask. No question. Very good. I’ll keep that one. 

So essentially now we need to work out these. So A and X are defined in a particular way. So
you can understand that if σA is -σX then only the energy level that we have defined as 2 will
have a lower energy than the energy level that we have defined as 3. So that is how it is
defined. When you say A and X, it means σA is much greater than σX. Convention nothing
else. Good question. I was hoping somebody would ask that question at some point of time
because  I  never  really  told  you  that.  
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right now now what am I left



Now what am I left with? I have to make these operate right on these wavefunctions and see
what I get and to do that what I need to know is these. That’s all. Fine, let’s begin. So let’s
work with the first wavefunction. This is what we want to know; <ψ1

(0)|H(1)| ψ1
(0)>  that should

give me the first order correction to energy of the lowest level.  All  right,  and this  I can
expand a little bit and write, now I’ll bring in this expression. hJAX/ ħ2<ψ1

(0)|IXAIAX| ψ1
(0)> I can

open a bracket here because everything will be common anyway. +<ψ1
(0)|IyA.IyX|ψ1

(0)>+ <ψ1
(0)|

IZA.IZX|ψ1
(0)>. This is what I need to evaluate. 

All right now I can erase this expression. Let’s take these terms one by one. IXA.IXX operating
on what is the wavefunction? ∝A∝X. Please respond when I ask something, otherwise I am
not sure whether you are following anything at all or not. IXA.IXX operates on ∝A∝X. What do I
get? What do I get? Of course, I can write it like this, (IXA. ∝A) that multiplied by (IXX. ∝X).
Now you should be able to answer looking at this table. So (IXA. ∝A), what do I get? Yes,  ħ/2.
βA and from here how what will I get? ħ/2. βX. So what do I get? Ħ2/4. βAβX. 

Now I think you understood where we are going. Okay, don’t be a spoilsport. This is what we
get. So now we are working with this term, don’t forget. If I now try to work that one out,
what will I get? Maybe I will do it here < ψ1

(0)|IXAIXX| ψ1
(0)> that turns out to be -- this ħ2/4 that

is common, I will take it outside and now you understand why we had written hJAX/ħ2 because
we knew and somebody else has done it. We are not doing it for the first time. So it is known
that this ħ2 will keep coming in the numerator. If you have ħ2 in the denominator already then
it will conveniently cancelled and give you a nice expression. That’s all. Okay, so I get ħ2/4
multiplied by integral, now I write this explicitly, ∝A∝X. What is this term? 
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This operating on this, we have worked out to be ħ2/4.βAβX. So here I will write βAβX. This
comes out to be ħ2/4. <∝A|βA><∝X | βX>. I hope you understand that when I write it like this
it is really a double integral, one over the coordinates of A, one over the coordinates of X. So
I can always write a double integral as a product of two integrals. That is why I have done
what I have done here and now finally we are in a position to allow Manthan to speak. 0 ho
jayega.  <∝β> that  is  0  they are orthogonal.  It  doesn’t matter  whether  ∝, β are  of  A or



whether ∝, β are of X. As if this is not bad enough that the first one is 0, the second one is
also 0. So 0 multiplied by 0 is definitely 0. 

Okay, so as we had discussed sometimes ago, who physical chemistry mein sab kuch zero ho
jata hai. Sab kuch nahin hota hai. Fortunately, a lot of things become zero. So what we see is
that this first term conveniently becomes zero. 

Okay, I will leave it to you to prove to yourselves that the second term also conveniently
becomes zero. Why, because look at this; second term is in Iy. See, Iy also operates on ∝ to
give you β, operates on β to give you ∝. It’s a different matter that you have a minus
sign in one case and I there but I x I is just -1. So you just proceed in the same manner you
will be able to satisfy yourself that the second term is also happily zero. 

So when we did a little bit of introduction in the last class, we had said that when we talk
about
coupling, we cannot, when we begin at least,  we cannot say that we will only talk about
coupling between the Z components. That is not the right way to formulate it. You have to
think of X component, Y component everything. But in case of the AX system what we see is
that interestingly, the X and the Y components turn out to be 0 anyway. You are only left with
the Z component. 

So if there is coupling that coupling is through Z component only for AX system. Tomorrow
we will see what is it that happens for A2 kind of system.  
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All right, what is this? What is this third one? Third one is very easy. Third one is IZA.IZX

operates on ∝A∝X which I can write as (IZA.∝A)( IZX.∝X). What is (IZA.∝A)? ħ2/2 ∝A. What is
(IZX.∝X)? ħ2/2 ∝X. So I get now ħ2/4 ∝A.∝X.   Unlike the other two, here we are dealing
with an eigenvalue equation. 
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So now when you write this term, what do you get? When you just write Z instead of X or Y,
what you get is ∝A∝X, and here you have ∝A∝X.  Toh physical chemistry mein sab kuch sirf
0 hi nahin ho jata hai, kabhi kabhar 1 bhi hota hai. 

This is a case when each of these integrals is actually 1. Okay, so what are you left with? You
are then left with ħ2/4. 
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Okay, now what we have not done yet? We have only evaluated the integral. So this is what I
get. + ħ2/4. Can I now erase the rest? What am I left with? This ħ2 that ħ2 cancel off, you are
left with hJAX/4, the expression that we had written without derivation last week. 
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Okay, so what is the energy? What is the first order correction to energy of  ∝A∝X? It is
hJAX/4. Plus or minus? Plus, right? So it will go up like this  and this will  be
hJAX/4. Now if you proceed in the same fashion it is not very difficult for you to prove that
this also for βAβX, there is an increase by the same amount for ∝AβX and for βA∝X there is a
decrease by the same amount. I have drawn a horrible diagram there. Sorry about that. Please
look up the book, they are more beautiful diagrams. But I hope it is not very difficult for you
to believe at this point after working this out that this is how the energies will change. And
now  we  have  arrived  at  the  expressions  that  we  had  used  without  derivation  when  we
introduced the topic. 
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So what are the expressions then? Now we cannot write it like this or can we? Yes, we can.
We can. If I now remove this, if I write actually the energies of the perturbed system after
coupling then in case of levels 2 and 3, I have to add the term -hjAX/4 and in this case for 1
and 4, I have to write hjAX/4. So far so good? Is there any question?

If I have a transition from say, can I have a transition from 1 to 2, ∝A∝X to βA∝X? Can I have
that transition?  ∝A∝X to βA∝X ? Is a transition allowed by our one photon rule?  ∝A∝X to
βA∝X allowed or not allowed? Allowed. What is happening here, which spin flip? Yes, A. 
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So let us see what is the frequency of this 1 to 2 transition that, of course, will be (E2-E1)/h.
You can see how nicely this problem has formulated itself. There is an h in both the terms. So
you just divide, you get it. What do you get (E2-E1)/h ? Can you tell me? Of course, what you



do then, you write it like h/2π in case you are confused. This will become h/4π, this becomes
h/4π. What do you get? Can you do this and tell me what you get.

Simple subtraction. In fact, you should be able to guess the answer. I will do the easy part fist.
Let’s look at the coupling term. I am subtracting E1 from E2, am I not? So I have to subtract
hJAX/4 from -hJAX/4. What do I get? -hJAX/2. So the second term is worked out. What is the
first term? That h is gone, h is gone anyway. Did I make a mistake here? Isn’t it 2π? There
was no 2 here. Actually, it’s something like that. What do you get? You get (1- σA)(γB0/2π).
This γB0/2π,have we encountered this somewhere? Isn’t that the Larmor frequency for a free
proton or bare proton? So I can just write it as μ0. μ0 is the Larmor frequency of a bare proton.

So you see now these two terms make perfect sense. The first term is Larmor frequency of
bare proton multiplied by (1- σA) that is the effective magnetic field that is felt by proton A.
-hjAX/2, the coupling term. This way I leave it to you to work out all the four. What kind of a
transition is this? New one, 1 to 2? Is it a transition for A or X? What did you tell me a little
while ago? A. So what we see is that instead of getting the resonance here, I get resonance at
a frequency that is lesser by an amount of hJAX/2. If you do 2 to 3, can you do 2 to 3 or 1 to 3,
can you do 1 to 3? ∝A∝X to ∝A βX? Which spin gets flip, A or X? X. So that should give you
the transition energy for one of the transition energies for X., 

You will see again you’ll get something like this. Exactly the same thing. Instead of σA, it will
be σX. This term will remain -hJAX/2. 

Can I have 2 to 3 transition; βA∝X to ∝AβX? No. Why not? So one photon rule; one photon
cannot cause a flip of two spins. So this is forbidden. Can I have 2 to 4 transition; βA∝X 

to βAβX? Yes. Which transition is that? For X. You work out the energies. Please work it out
yourself. Work out the energy, you will see, you will get something like μ0(1-σX) and this time
it will be hJAX/2. Similarly, the last one will be for A. So what we have been able to do is we
have been able to get expressions for the frequencies of resonance for AX system in presence
of coupling and we have been able to prove that that’s why we get the separation bites. 

Tomorrow, in the last class, we address the question, what happens when σA=σX. Is there
coupling? Is there no coupling? In the spectrum, of course, we do not see any evidence of
coupling. Does that mean coupling is not there? That’s s what we will see tomorrow. 


