
Prof. Anindya Datta: Okay, now in the previous section, we have performed a 
discussion of time dependent perturbation theoretical treatment of a two-
state system characterized by wave functions ψl and ψm. We are more or less 
working with the understanding that ψl has lower energy, ψm has higher 
energy, but it can be the other way around, it does not matter. In doing that, 
if you remember, we have written the wave function of the perturb system 



as a linear sum of two-wave functions, where Cm is the coefficient of the 
state that is not populated at 0 time, okay. So if you’re talking about 
absorption spectroscopy, the higher state. And we have derived this 
expression that dcm/dt = -i/ħ an integral over space multiplied by an 
exponential term, an exponential factor in time.

Now the next step is to use the expression for the first order correction to the
Hamiltonian, which is this, well, actually multiple by μx, okay. Put it in there 
and see how the expression evolves, okay. That is what we are going to do 
now. Yes. How do we get Hamiltonian as -μx? Ex. So the question is how do I 
know that this first order term -- does that answer your question? Okay, one 
was missing. How do I know that the correction terms is -μx. Ex, because if 
you remember, how this fab mechanical treatment of quantum mechanics is 
carried out, we always start from classical mechanics, don’t we, right.

When you worked with the harmonic oscillator, for example, how did you 
write the Hamiltonian. You wrote the Hamiltonian -- well, the kinetic energy 
part is the same anyway, but for the potential you wrote ½ Kx2. Where did 
we get that from? We got that from our understanding from classical 
mechanics that for a simple harmonic oscillator, ½ Kx2 is the potential 
energy. Here also, we’re trying to think how we can model our system. So 
building model is a very important step in any theoretical treatment. What is 
the mode that you want to use? Of course, then the question that comes is 
that, is the model correct or does the model apply, and if it does, how far 
does it apply?

So the model we are using here is that, we’re modeling this molecule as an 
electric dipole, okay, and we’re only working in the X direction so μx. We are 
modeling light as an oscillating electric field; we’re neglecting every else. 
Why? Because this electric dipole, electric field interaction is going to be the 
strongest among all the interaction that are possible within this model. You 
can start with x, y, z, it doesn’t matter, okay. What we’ll do is this, we’ll get 
some expression for X direction only.

Now do you think for an isotropic radiation, isotropic radiation means, in all 
direction you have oscillation, for isotropic radiation, you’ll get the same 
expression, right, for Ex, Ey and Ez, right, then it’s very easy to combine them.
That is what we’ll actually in the next class, okay. A factor of three comes in, 
that is all. Any other questions? Okay, good.

So let us tidy up this a little bit before we go ahead and put it there. What is 
the first order correction terms for the Hamiltonian? It is -μx. Ex of course, 
we’ll now write the expression of Ex. 2 Ex

0 (cos 2π νt), all right. Now see, this 
is what is going to go in here, all right. And what should we try to do? We 
should try to separate the factors. The one in special coordinates and one in 
temporal coordinate, time. So I think you can see from this expression and 



that expression that it appears that the problem should become simpler if we
convert this cosine term, cosine factor, to exponential term, some of 
exponential terms, because they already have something that is an 
exponential term in time, right.

If I write this cosine in the exponential form, then it should become easier to 
handle this problem. So see please understand the line of thinking. This part 
of sometimes intimidating for us, chemists, because we see a lot of algebra 
and what we tend to do is we tend to remember, all of it, all right. That being
said, and now we have to be careful because this is the point where my 
derivation and Ramy’s derivation become different, okay. So what do I write, 
-μx. Ex

0, what is cos Kt, E-iKt, plus or minus, E-iKt, sure, plus, and is there an i 
multiplied somewhere, no, that is for sine. So it’s something like this -- and is
there a ½, right. Yes.

So I can just do it step by step, 2Ex
0 ½ [exp (2πi νt) + exp (-2πi νt)], is that 

right? Whole by 2, I’ve written already. You cannot read it only because my 
handwriting is bad, 2Ex

0. ½, okay. Of course this 2 and that 2, thankfully 
cancel off. So I have one -- it sounds very strange if I say, I have one 2 less to
think of, anyway. Is this expression correct? I’ll modify this a little bit and I’ll 
modify that a little bit also. What I’ll do is here instead of ħ, let me write it 
complete as h here and 2π here. What am I trying to do? I am trying to make 
these two expression completely compatible.

Here I already have 2π, right, so why don’t I divide by h and multiply it by h. 
Why did I do this? I did it so that he two expressions look similar, so it 
become a simpler for us in the next step. Also, here now I have hν, here I 
have hν. Hν and E are of the same dimensions, right, okay. So I am just 
demonstrating that these are actually dimensionally consistent, there is no 
problem.

Let me now write -- okay, there is one -1 here  and one -1 here, multiple -1 
by -1, it becomes 1, right. Right or wrong? According to Graybiel, it does not. 
So this is where the difference begins. Okay, i/ħ, what else do I have here, I 
have Ex

0, Ex
0 is a constant, right, Ex

0 is a constant so I keep it here. I’ll μx 
inside the integral, because as you have seen, when we derive the selection 
rules for your vibration and rotation, μx can actually take a different term for 
different problems, so I cannot μx outside the integral, I have to take it 
inside. So when I do that, this is what I get. I am taking μx inside, so I 
write<ψm|μx|ψl> integrated over all space. Does that look familiar? What is 
it? Yes, that is our transition moment integral. That’s we have been seeking 
so far. we wanted to know where transition moment integral came from. Now
you know the answer; transition moment integral came from this time 
dependent perturbation theoretical treatment of transition between two 
states, okay.



Even before I write the remaining factor, tell me this. What happens when 
transition moment integral becomes 0? Cm = 0, step by step, don’t jump 
steps, right. Dcm/dt is 0, right. You start with Cm = 0. So this is what we’re 
saying, Cm versus t, initially it is 0, to (0,0) point, right, and initial time, it is 
something like this. So if dcm/dt is also, then after time you don’t reach 
anywhere, your Cm remains 0, okay. So that is why we have been talking 
about transition moment integral in our previous discussion. If transition 
moment integral is equal to 0, then the system remains in the lower energy 
state or rather the initial state characterized by l, quantum number l. There 
is no questions of it mixing with the state characterized by quantum number 
m, okay, dcm/dt = 0 and we’ll come back to it and put it in a little different 
way, actually it is the same thing, a little later.

So this is your transition moment integral, fine, multiplied by, now I have two
exponential terms, right. First one is [exp {2πi/h(Em - El), then what do I do, 
+hν)t}. Have I written it correctly? I also get confused when there are two 
many brackets. Have ai closed the brackets in the right place, okay? Then I 
can write the second term + exp {2πi/h (Em - El =- hν)t}]. Is  this correct? Can
we go ahead? Have you understood all of this? Any questions Vikas? No 
questions, very good.

Okay, now we need to understand what these functions would look like, but 
before that, maybe let us do the integration. So this is the first integration 
that we promised to do today, and this is where I get an answer that is 
different from this waybill, so I want you to do it. So, so far you agree with 
me, right, whatever I have done. Now what I want is I want to know what is 
Cm. How do I get a value of Cm? Your derivative is known, okay, so Cm would 
be what, Cm 0 plus this multiplied by whatever changes. So basically we 
integrate the right hand side with respect to time, and when you integrate 
with respect to time, what are the limits, 0 to 2 exactly. Can you do the 
integration and tell me what term turns out to be? What? You’re saying that 
because you know BOLD resonance condition, okay. Right now, let us say, it 
may or may not be equal to 1, okay, let us say, this is a constant, for get 
what it is, some constant K, all right. What that, let us do the integration.

So what Manthan is saying is actually correct. What he is saying is the 
second term, in the second term we have (Em - El - hν). Isn’t that equal to 1? 
It is equal to 1 when Em - El = hν. But then, even here, this is also equal to 1 
when El - Em = hν, right. So we’ll talk about that. That is actually what brings 
us to do second important aspect of this discussion, that is BOLD resonance 
condition, but before that, please do the integration and tell me what you 
get. Meanwhile, I’ll just go ahead and write this.

Show me now what’s the answer. You’re getting of this, right, I also have got 
negative of this, but I don’t know why in Graybiel, this is the expression that 
is given. It doesn’t matter, I can always write a minus sign outside. And what 



happened to this ħ, that got cancelled during integration, right. So for now, 
what we’ll do is we’ll go by Graybiel’s expression, because it doesn’t really 
matter. My expression really has that minus sign outside, and it looks like, 
you’re also getting that. What about you Manthan? Just tell me do you get 
this or do you get a negative. You get a negative. Okay, let’s just go with this 
expression now, let’s not bother about the minus sign outside, because as 
you’ll see, eventually, we take mod square, so you don’t have to worry about
minus.

What is the second term? + 1-exp whatever, it’s coming as -1, right, mine is 
also -1, but then Graybiel has written the book not I, not you. So we’ll follow 
it, but it does not matter, that’s the point I am trying to make. You can write 
a minus sign outside, it does not matte, because eventually, what is 
important is your mod square. Of course physically, what it means that 
dcm/dt can never be negative, isn’t it. Dcm/dt has to be positive. So that is 
the only place where I have a little bit of a hitch. Anyway, we’ll just continue 
from here, 2πi/h(Em - El - hν)t / 2πi/h (Em -- I don’t have the 2πi/h -- Em - El - hν.
Yes, because we’ve cancelled the ħ. So this is okay, except for the minus 
sign, let’s proceed with this.

Now look at these two terms. Will you agree with me if I say that most of the 
time, both the terms are actually very, very close to 0? Will you agree with 
me if I say that? We’re dividing by h right, here. Dividing by h here means 
what, h is a very small number. What is the value of h? So if I may digress a 
little bit, a very favorite question in B.Sc. that was there when I was a 
student, I don’t know if it’s still favorite is that what would happen if h = 1. 
So if h = 1, then what is the product of uncertainties. There is h/2π, right. So 
the problem is that uncertainty would enter the real world, microscopic 
world, not real world, yeah, microscopic world. So everything you, I, chalk, 
board, everything would be uncertain, right. So thankfully, h is not equal 1, h
is a very small number.

So because of that what happens is that the follow off of both the 
exponential terms is rather sharp, okay. We can safely say that both the 
terms are actually equal to 0 unless the denominator is equal to 0, oaky. If 
the denominator is equal to 0, then what will happen, the term will blow up, 
right, okay. So first thing is both the terms cannot survive together, because 
the condition for blowing up is Em - El = hν or El - Em = hν. Of course, both 
cannot be satisfied at the same time. Hν, is that positive or negative? Hν, 
frequency is always positive, h is a universal constant that is also positive. So
right hand side is always positive. So that means left hand side has to be 
positive. So what does the first one mean? Em - E is positive that means El is 
smaller than Em, okay? What is the step -- what is the level that is populated 
at 0 time l or m? What are you saying, l, okay, l, m, anyway, l, right, l for 
lower. This is the situation in that case.



For first one, Em - El = hν, this is Em, this is El. For the second one, the upper 
one is El, the lower one is Em, okay, and I’ll just draw the arrow to indicate the
nature of transition. So the first one, Em - El = hν -- well, it’s a little strange 
because this is actually the second term, right, Em - El = hν that is satisfied 
by the second term not the first one, Em - El - hν = 0. So when Em - El - hν = 0,
what we’re essentially saying is that we’re dealing with an absorption, the 
transition is absorption, going from lower to higher level. When El is higher 
and Em is lower, we’re saying that we’re dealing with emission, that’s all, 
okay.

So this term is going to blow up when we discuss absorption; this term is 
going to blow up when we have emission, right, but the point to note is that 
for absorption as well as emission, the terms are exactly similar, right. Is it 
right? 1 - EKt/K, you can right both in the same way, it’s that K is different 
depending whether you’re talking absorption or emission, same kind. So 
please remember this, please remember. So what I am trying to say that is 
the expression for Cm, for absorption and emission should actually be same, 
isn’t it, because EKt/K, that’s all that is there. Understand what I am saying? 
Well, 1 - EKt/K that is the general form that is there for absorption as well as 
emission. So the Cm or later on when we talk about Cm*, they should have 
the same kind of expression for both the process.

The only thing that we have to remember is that when we talk about 
absorption, I mean induced absorption, of course. What is the meaning of 
induced here? Induced means something is brought about by external light. 
Second part is perhaps a little more difficult to understand. When I talk about
emission here, I am talking about induced emission or stimulated emission, 
emission that is brought about by presence of light, not spontaneous 
emission. As you know, if you excite something, many time it just gives out 
light by itself, it has to come down. We’re not talking about that kind of 
emission here. We’re talking about induced or stimulated emissions. Please 
don’t forget this. This is a very important point at this juncture, okay.

So well, I have promised two integrals today, but looks like we have to be 
satisfied with one, because our time is almost up. Let me just write the final 
expression. So what do we deal with -- which one do we deal with to start 
with, absorption or emission? We’ll deal with absorption; absorption happens 
first, emission happens subsequently.

So for absorption, the expression for Cm turns out to be then 1- -- well, I 
should writ the whole thing -- Ex

0 multiplied by your transition moment 
integral, multiplied by 1 - exp {2πi/h (Em - El - hν)t} / Em - El - hν. This is the 
closing expression for today and opening expression for the next class. What 
we’ll do now is that we’re going to take this Cm. Cm give you amplitude, okay. 
Amplitude of what? Ψm. Now if I take mod square of that amplitude, do you 
know that this mod square of amplitude gives me the contribution or 



probability, yeah. So we want an expression for mod square of Cm. That is 
what we’ll work out the next day, a little more algebra, that is all. And then 
we’re going to reach another important observation.

What have we learned today? Let us summarize. We’ve learned two things. 
We have understood where transition moment integral comes from and 
we’ve understood that Cm is 0 if transition moment integral is equal to 0. Cm
= 0 means there is no mixing of states brought about by light, or in other 
words, there is no transition brought about by light. There is a first important 
thing that we’ve learnt. The second important thing that we’ve learnt is 
BOLD resonance condition. We have seen that unless BOLD resonance 
condition is fulfilled, you cannot have an induced transition, may it be 
absorption, may it be emission, okay.

We have been taking BOLD resonance condition for granted so long, and it 
makes sense also, right. Even without doing any math, it makes sense if we 
say delta = hν, we can understand it from our commonsense, but what we 
see is that we can arrive at using uncommon sense as well, okay. So these 
are the two take-home message from today’s discussion. Next day, we’re 
going to talk about mod Cm

2, and then we’ll get access to one more thing.

See so far, whatever information has come is from the space part, right. The 
time part has given us one information that is your resonance condition, but 
there is something more that will come out from here. From here, we’ll learnt
that -- what kind of system are we talking about so far, how many levels? 
Two levels. What are the energies? El and Em. So kind of spectrum do I 
expect? One line, right, one line, no widths. When we do the rest of the math 
here, we’ll see that even for this system where you El and Em, two energies, 
you can never have a 0 line width, some finite line width will always be there.
That will come form the time part, right, and that is what is going to be 
related to your uncertainty principle. So that line width that you get is called 
natural line width, okay. This is what we’ll discuss the next day and then we’ll
go on to what is called your Fermi’s Golden Rule, and we’ll also talk about 
the Einstein’s discussion, and we’ll see what is the relationship between the 
different absorption coefficients, okay. This is what it is for today.


