
Prof. Anindya Datta: We are going to start with a revision of what we had 
done in the last class, and then we’ll go on and we’ll try and derive an 
expression for the probability of the higher level getting populated as a result
of excitation by light, okay. Shall we begin? Great.



So let us remind ourselves a little bit about what we have discussed already 
about your time dependent perturbation theory. TDPT is time dependent 
perturbation theory. As you remember, we’re now working with time 
dependent wave function Ψ, and it looks like I have gotten a little better at 
writing Ψ with a little bit of practice. So this is equal to time independent 
space dependent wave function, ѱ, multiplied by -- yeah, but I’ll write the 
expression of φ anyway, since we have done it once, into the power iEt/ħ. Is 
that right, or is there a minus sign? Os that is what I was saying, do not 
assume that whatever I write is correct, okay. You have to correct me 
wherever I go wrong, e-iEt/ħ, and the problem that we’re dealing with involves 
two levels. One is l and other is m. I can just write like this, all right.

So what have we said? We have said that when there’s no light, the 
Hamiltonian of the system is the unperturbed Hamiltonian and the wave 
function of the system is Ψl, okay. Then we said, what happens when I turn 
on the light. In presence of light, and one of you asked the question, how is 
the light on or has it gone off, so the answer is light is on. We’re taking it as 
an oscillating electric field, as we’ll discuss shortly. So of course there’s an 
oscillation and all, but the light is on. What we do is at some 0 time, before 
the light is turned on, the system is described by wave function Ψl, then  we 
turn the light on and keep it on, okay. We have not turned the light off yet. 
When we turn the light off, it becomes a different ballgame altogether. So in 
presence of light, the system is described by a wave function Ψ = Cl. Ψl + Cm.
Ψm and we’re working with initial time t tending to 0. So this Cl tends to 1 and
Cm tends to 0. This is an approximation that we’re going to use shortly. So far
so good.

And then the other thing, and this is where I had made a mistake. In 
presence of light, what is the Hamiltonian? Hamiltonian is H(0) plus some 
perturbation term H(1), yeah, right. We are working within ambit of first order 
perturbation only, small perturbation, first order is good enough. And today, 
we’re going to write an expression for this perturbation, and that is, we’ll 
write it as, -μxEx.

To start with, we’re going to confine our discussion to one axis, X axis only. 
So talking about plain polarized light, right, and that’s where it is. So μx is the
x component of the dipole moment of the molecule. So we’re considering the
perturbation to be an electrostatic interaction between the electric dipole of 
the molecule and the oscillating electric field associated with light. Does that
mean that there is no interaction between the magnetic field and the 
magnetic dipole? It doesn’t meant that. Does that mean that there is no 
interaction between the electric field and magnetic dipole? No. All it means is
that, we’re starting with the interaction that is largest. Electric field, electric 
dipole, this interaction is the largest.



So if you have learned this solute solvent interaction, you might remember 
that the most important interaction is iron dipole considering a dipolar 
solvent, followed by a dipole, dipole interaction, followed by induced dipole 
induced dipole interaction and so on and so forth. So different interactions 
are there. Some are large, some are small, we’re focusing right now on the 
largest interaction. In the later stage of the course, there will be occasion to 
talk about weaker interactions, right, but this is only the starting point.

How do I write Ex? Is this part of the board visible from the back? Can you 
read this? Ex is written as 2Ex0 cos 2π νt when ν is the frequency of light, 
okay. We’re going to use this expression today and we’ll see how this gets 
modified, but before that, let us redo what we had done in the last class and 
get an expression for time derivative of this coefficient DCM, okay. We’ll do it 
quickly.

So I presence of light, your Schrodinger equation should be something like 
this. The Hamiltonian as we have said already is the uncorrected Hamiltonian
first plus the first order perturbation term. That Hamiltonian operates on the 
wave function. What is the wave function, tell me? What is the wave function
when light is on, Cl. Ψl + Cm. Ψm, we have to consider both the states, [Cl Ψl +
Cm Ψm]. I am trying to write the time dependent Schrodinger equation. So can
you tell me what the right hand side will be? -ħ/i ∂/∂t of this whole thing, -ħ/i 
∂/∂t [Cl Ψl + Cm Ψm], and before proceeding further, we need to remember 
one thing that the Cl and Cm, these coefficients are functions of time, okay. 
These coefficients are not independent of time. At time t = 0 Cl is exactly 
equal to 1, Cm is exactly equal to 0. As the time proceeds, the value of Cl 
decreases from 1, value of Cm grows from 0, all right, but we are working 
under the approximation that our discussion is confined to initial time where 
Cl deviates not too much from the value of 1. Cm deviates not too much from 
the value of 0.

Please remember this. This is usually a source of confusion, because what we
often think when we read this part is that we are saying Cl = 1, we are saying
Cm = 0, then how do we even talk about DC and DT. Please remember we are
not saying Cl = 1, we are not saying Cm = 0, all we’re saying is that, the 
deviations of Cl and Cm from the initial values of 1 and 0 respectively are not 
too much, but deviation is there; otherwise, what are we talking about, okay, 
right.

So when we expand what happens? On the left hand side, what are the first 
two terms, H(0) Cl -- maybe I’ll do it. Cl H(0) Ψl + Cm H(0) Ψ + Cl H(1) Ψl + Cm H(1) 
Ψm, and the right hand side is Cl ∂ Ψl/∂t + Cm -- oh who is going to write this 
-ħ/i, I always forget that, I’ll write it once, save chalk. -ħ/i[Cl ∂ Ψl/∂ + Cm ∂ Ψm/∂
+ Ψl. Dcl/dt + Ψm dcm/dt]. Okay, so far so good, all right. Am I allowed to write
dcm/dt or do I have to write ∂cm/∂t? Was that a yes or was that a no? For both?
Then, we can write Dcm/Dt, very good, okay.



Now what happens, look at this term and look at this term. They’re actually 
equal to each other. That is your time dependent Schrodinger equation for Ψl.
Look at this term and look at this term. Time dependent Schrodinger 
equation for Ψm just multiplied by Cm, so they cancel off, okay. We are left 
with. Do not forget that ħ/i. This is what we are left with, right. Is it right? 
Then what did we do? We said, there’s no point trying to talk about Dcl/Dt 
and Dcm/dt both at the same time, because it’s not as if they’re uncorrelated.
Dcl/dt and Dcm/dt are correlated. Dcl/dt is the rate of disappearance of Ψl, the 
state associated with Ψl. Dcm/dt is the rate of production of the state 
associated with Ψl. It is enough if you work two, and if you work with two, it’s 
complicated anyway. So you want to eliminate one of the terms.

We just decide that we’re going to work with Dcm/dt. I want to eliminate this. 
What is the best way of eliminating the first term? Left multiple by the 
complex conjugate of Ψm and integrate over all space, right. Then what will 
happen? This is going to vanish, because Ψl and Ψm are orthogonal to each 
other, okay. Let us do that. When I do that, this is what I get. On the left hand
side, I get Cl <Ψm H(1)|Ψl> over space or time or both, space, only space not 
time, that is what bracket means, right, space, + Cm <Ψm|H(1) Ψm> is equal to 
-- I can just write it there -- = -ħ/I dcm/dt.

We have already discussed why on the right hand side we have only one 
term, because the other term vanishes. Is it okay now? There is a minus sign,
because of ineffective erasing of what was in it earlier, I think, or maybe not, 
whatever, but this is correct. Now we are okay, okay. So far so good, all right.
What is the next thing that we have to do? Now we use our approximation. In
fact, so far, have we used any approximation? No, right. So far, it has been 
an absolutely exact treatment. Now we use that approximation of ours that 
the Cl is more or less = 1, Cm is more or less = 0, all right.

So what we do is we put this to 0 and we erase. So finally, you are left with 
Dcm/dt = what do I put this to be, we put this to be 1, = -i/ħ. Now I can 
simplify this a little bit, can I not, because integral is over space. So I can 
keep the space dependent part of the wave function inside the integral and I 
can bring the time dependent part out, right. So I can write it like this <ѱm|
H(1)|ѱl>. Please note ѱm and ѱl written here are different from what are 
written here. This is ѱ, these are Ψ. So these are product of space dependent
as well as time dependent part; these are only the space dependent part, 
okay, and the time dependent part comes out. What does the time 
dependent part turn out to be? Exponential, what will it be [i(Em - El)t/ħ]. Is 
that right? Yeah. Okay.

Well, in the textbook it is  written as -i/(El - Em), so it’s the same thing, it 
doesn’t matter. So far so good. So this is where we had reached. Now we are 
going to use this and we are going to proceed with the next part of the 



discussion. Is there any question up to this? Up to this, we are all good. Now 
you have to be careful because now is where our opinions seem to differ.


