
Prof. Anindya Datta: So in the last class, we had stopped with a question and 
the question was is it impossible to get an idea about rotational and 
vibrational levels of, say, hydrogen, dihydrogen, because what we’ve seen is 
that when you’re talking about diatomic molecules, of course, we’ve not 
talked about anything beyond diatomic. So for diatomic molecules, we have 
understood that an essential condition for microwave activity is that there 



must be a permanent dipole moment, and for vibrational spectrum, for IR 
spectrum, essential condition is that vibration must bring about the change 
in dipole moment. But then it boils down to the molecule must have a 
permanent dipole moment for diatomic molecules, because if it is something 
like dihydrogen or iodine, then no amount of stretching can produce a dipole 
moment in, say, a homonuclear diatomic molecules, okay.

So we have said that it is possible to get an idea about these vibrational and 
rotational levels and we have said that it is possible to do it by using what is 
called Raman effect, by doing Raman spectroscopy, you can circumvent this 
problem, and that is what we initially thought we’ll discuss now, but then, 
well, this morning I changed my mind, because there’s a more fundamental 
question that remains to be answered. I think it is better to answer that 
question before going onto another kind of spectroscopy. So we have a little 
bit of change in plan. We take a raincheck on Raman spectroscopy for now, 
and today, we ask that question that has been haunting us for quite some 
time, and that question is, we’re saying that all the selection rules are 
derived on the basis of transition moment integral or transition dipole 
moment being non settled. Where did that come from?

We have postponed that class. Usually that discussion comes first, but my 
experience is that if you do that first, very often we lose the class, because 
people think what is going on. So now that we have established that 
transition moment integral is a very important parameter that decides which 
transitions will take place and which transitions will not, let us now try to 
address this question over the next few classes, what is the origin of 
transition moment integral, okay. We do that by performing a semi classical 
treatment of interaction of radiation with matter and when I say semi 
classical what we essentially mean is that we’re going to model radiation in 
the classical way.

What is the classical description of light? Electromagnetic wave. Light is an 
electromagnetic wave. What does that mean? Oscillating, so oscillating 
electric and magnetic field. Now you’re saying that they’re perpendicular to 
each other. But of course, I mean, and these two are perpendicular to the 
direction of the propagation of light, and that is the description of polarized 
light, right. In unpolarized light you have electric field oscillating in all 
possible plains, perpendicular to this direction of propagation of light and you
have magnetic fields that are perpendicular to it. So that is the description of
light that we’re going to adapt here, okay. And for now, we’re going to work 
only with the electric field, and we’ll tell you why. So light is modeled as this 
oscillating electric field, classical description.

What about matter? For matter, we have to use wave function, that’s why it’s
called semi classical. You can do a complete quantum mechanical description
of this problem as well, okay. So now, and in doing this, see in chemistry, 



more often than not, we stick to this time independent Schrodinger equation,
hydrogen atom problem and all that, we have -- it has been sufficient to work
with time independent Schrodinger equation, not in this case. Here, we will 
have to use time dependent Schrodinger equation and what we’re going to 
use essentially use eventually is time dependent perturbation theory.

You’re familiar with time independent perturbation theory, you’ve dene that 
already. Time dependent perturbation theory is actually easier, I think, than 
time independent perturbation theory. So it will take that as it comes, so it 
will come today itself. But before plunge into that, let us remind ourselves of 
some basics of this time dependent Schrodinger equation, okay.

Now I’ve written ѱ in a little funny matter, a little different from what I 
usually write, right. This is given my poor artistic abilities, this is capital ѱ 
and when I write capital ѱ what I essentially mean is that this capital ѱ is a 
function not only of the special coordinates but also of time, all right. You 
have dealt with wave functions like this earlier I hope. Whenever you have 
done that, what is the first step that you have taken? Yeah. You try to do a 
separation of variables, right, separate the special variable from temporal 
variable. For that, what is the first condition, you have to write this wave 
function, which is a function of special as well as temporal variable. We have 
to write it as a product of space dependent part and a time dependent part, 
and the convention we’re going to follow is this is a product of ѱ, which is a 
function of (x, y, z).

Now this is capital Ψ, this is small ѱ, but how many times will I say small ѱ, 
I’ll just say ѱ. If I mean capital Ψ, I’ll say capital Ψ, multiplied by time 
dependent part φ, and once again, how many times will we write, x, y, z, t 
and all that, we’ll simply write it as ѱ. φ. So please don’t get confused. 
Remember small ѱ means time independent special part of the wave 
function; φ is the time dependent space independent part of the wave 
function. Are we clear so far?

And with this, we have to remind ourselves what is a Schrodinger equation, 
time dependent Schrodinger equation, okay. What is time dependent 
Schrodinger equation? Before that let me write the Hamiltonian for that, and 
I’ll write it as H(0), because we’re going to use perturbation theory. We’re 
going to bring in a correction term later on. So H(0) as you know is -ħ2/2m Δ2. I
will not repeat Δ2, everybody knows, right, plus a potential, this potential is 
dependent on (x,y,z), time independent special coordinate dependent 
potential, okay.

Now what is the time dependent Schrodinger equation? When this H(0) 
operates on capital Ψ, it gives you minus ħ/i ∂/∂t of Ψ, okay. Of course, we’re 
going to write this as a product of space and time parts. We write it like this, 
H(0) operates on [ѱ φ], this is also ∂/∂t of (ѱ φ), and this H(0) is time 



independent, isn’t it, right. So φ is a constant as far as this is concerned, so 
we might as well bring φ out and write like this, φ H(0) ѱ and here, this ѱ is 
time independent, so that comes out, so I can write it like this, ѱ [-ħ/i ∂/∂t of 
(φ)], but then it doesn’t make sense write ∂ anymore, isn’t it, because 
whatever it is operating on, the derivative is a function of time and nothing 
else. So I might as well write this as [-ħ/i dφ/dt], and the next step is also 
simple.

Divide both sides by the product of ѱ and φ, what do you get on the left 
hand side. You get H(0) ѱ/ѱ, on the right hand side you get this whole thing 
divided by φ. Now left hand side is a function of special coordinates only no 
time, right hand side is a function of temporal coordinate time only no 
special part. So both sides have to be equal to some constant, and as we 
know already, what the left hand side is, we write this simply as E energy 
and that is how you get, first of all, the time independent Schrodinger 
equation, H(0) ѱ = E ѱ and time dependent part separates out like this, you 
can write -ħ/i dφ/dt = E φ or dφ/dt = -iEφ/ħ, is that right. Hence, what is the 
expression for φ that you get? Yeah. E-iEt/ħ. You can write it in two, three 
different way, this is what we’ll write for now. So far so good.

So this ѱ then -- I don’t need this anymore. This becomes the space 
dependent ѱ. e-iEt/ħ, okay, right. So this is our separation of variables into 
special and temporal ones. We separate the equation into a time 
independent part and a time dependent part and we get this expression of 
the wave function, which is dependent on -- which is a product of a special 
part and a temporal part. This is the form of the wave function that we’re 
going to use in our subsequent discussion. I think this is something that you 
know already. So I hope this was as recap for everyone. Any questions so far,
any doubt, great.

Now what we’ll do is -- where are we going to use it? We’re going to use it in 
spectroscopy. Spectroscopy means transition from one state to the other, 
right. And in the systems that we’ve studied so far, rigid rotor and harmonic 
oscillator, anharmonic oscillator, there are of course many states, right. But 
then we always talk about one transition at a time, don’t we, right? There is 
something called one photon rule. Do you know one photon rule? What is it? 
One photon can bring about only one transition, right. So your photon is not 
like Rajinikanth’s bullet. Rajinikanth can kill multiple villains using the same 
bullet and knifer and everybody knows that clichéd story, but your photon is 
not like that kind of a bullet. One photon can only bring about a transition 
from one state to another state, it cannot get separate and bring about 
many, many transitions, okay.

So what we’ll do is we will at least to start with, keep it very simple and we’ll 
try to understand a two-state system, a two-level system. Yes sir. Physical 
significance is something that we’ve studied long ago, that it travels as 



packets, right. So what it says is that you cannot split a photon. So you can 
actually add two. So there is something, if we get time, we’re going to 
discuss. There’s something called nonlinear spectroscopy. Nonlinear 
spectroscopy means, well, you know this ball resonance condition, right, you 
have an energy gap ΔE. If the frequency of the photon is such that Hν = ΔE, 
then it will be absorbed. Sometimes what happens is energy gap is 2.Hν. 
Even then if you use an intense field of light, say laser light, then you can 
bring about a transition. What’s happening essentially is that, you can think 
in the classical way, two photos are adding up to bring about this transition. 
So what we do is we invoke, what are called stationary states. We’ll 
encounter them when we talk about Raman spectroscopy, but then one 
photon cannot get split into two. Photon is a fundamental unit of light, you 
can think, okay, that’s where it comes from 14:41 Law, that’s where one 
photon rule comes from, okay.

So we’re going to talk about now a two-level system. Let us say, this is 
characterized by Energy El, l for lower, but this one is m, not u for upper but 
m the next letter in the alphabet. This of course is also characterized by Ψl 
and this is wave function for this Ψm, all right. Let us start with a situation 
where this level is populated and this level is not, very much like your 
harmonic oscillator or anharmonic oscillator. So population of this is 0, 
population is this is some finite population, there’s some probability of this 
state being populated, okay.

In that case, what will be the wave function of the system if only the lower 
level is populated? It will be ѱl, right. You don’t worry about whether there is 
any ѱm, ѱq, ѱr, nothing is there, right, but what happens when you bring in 
light and cause a transition. In spectroscopy what we call a transition is in 
the language of quantum mechanics, super position or mixing of states. 
What we are trying to say is, the slide comes in and perturb the system, so 
that this probability of the upper state being occupied also increases, okay.

Now after some time, sometime after you switch on the perturbation, let us 
say, then what happen, what should be the wave function hat properly 
describes the system? Yes, what you’re saying is right. What you’re saying is 
Ψl + λ. Ψm, okay. To keep it more symmetric, as you’ll see, symmetry is very 
important in chemistry actually, not just spectroscopy, we’ll write a more 
symmetric expression, and that expression is this Ψ is equal to let us say, 
some Cl. Ψl + Cm. Ψm, fair enough. Instead of one end λ as coefficient, I am 
trying to use Cl and Cm as coefficients, all right.

Let us go back one step and think, at time t = 0, what is the value of Cl, what
is the value of Cm. Cl = 1 and what is Cm, 0. So I’ll just write that down, so 
that I don’t forget. At time t = 0, Cl = 1 and Cm = 0. What happens for initial 
time, small time, let us say, a very small time has elapsed,  after I’ve 
switched on the perturbation, Cl will still be close to 1, Cm will still be close to 



0, right. So let me write like this when time t tends to 0, I can write to a good 
approximation, Cl is approximately equal to and Cm is approximately equal to 
0. We are going to use this approximation a little later. Are we okay with this, 
understood?

I am not saying -- okay, let’s come back to that discussion later. What 
happens sometime after I’ve switched on the perturbation? Let it be initial 
time. Now Cl will decrease a little bit from 1, Cm will increase a little from 0. 
Now you need to write the linear sum as a wave function, okay. And if you 
work at long times after switching on the perturbation, then of course, Cl and
Cm can even become comparable depending on what kind of system you’re 
working with, what kind of electric field you’ve used.


