


Prof. Anindya Datta: Now we move on to the next part of our discussion of 
vibrational spectroscopy. So far, we had worked with the assumption that the
potential is ½ kx2, the bond behaves like harmonic oscillator, but as you 
understand, especially for the atomic molecules, the bond cannot behave 
like a harmonic oscillator, because if that is the case, then even when x is 
infinity, the bond will not break, isn’t it? It’s a parabola, it just keeps going 
up, but then, as you know, HCl does break. If you make it vibrate took much, 
then it’s going to break. That is impossible that in a real molecule, in a real 
atomic molecule at least, you can have these harmonic potentials.

As we’ll see later on, in case of polyatomic molecules, you can have what are
called normal modes of vibration, which are harmonic, okay, but for the 
atomic molecules at least, this cannot be the right potential. This is we’ve 
studied so far.



So the correct potential for the atomic molecule has to be something like 
this, for large values of x, it has to turn and reach a saturation, okay. This 
kind of oscillator is called an anharmonic oscillator.

The potential that is used most commonly to describe anharmonic oscillator 
is called Morse potential. You do not have to remember it, but you can think 
in which ways, we can try to arrive at this potential. In the discussion we had 
about ro-vibration spectrum. If you remember the last expression we had for 
the energy of the spectral lines, what was the correction term? The 
correction term was (B1 - B0) (J +1)2, right. So if you now look at the entire 
expression, what is it? You have a term, which is 0th order in (J = 1), then you
have a term that is first order, right, and then you have a term that is second
order.

Similarly, what you can do is you can expand this potential. You have ½ kx2, 
right. That is the potential energy for harmonic oscillator. Now you can take 
something which is x4 and this way, you can try and get the correct potential.
There is actually an ongoing problem. People, even now, try to use different 
kinds of potentials to see where they get the basic result, but he globally 
accepted potential that we use at least at this level is Morse potential, which 
gives you a nice curve like this.

And then if you look at this region, you see the deviation from harmonicity is 
not much. Anharmonicity causes a small deviation from harmonicity, and 
when that happens, as you all know by now, we can use what is called 
perturbation theory. When the deviation from the ideal situation is no too 



much, then we can get away using perturbation theory. That is what is done, 
anharmonicity is dealt with as small perturbation, and that is how the 
problem is solved, and when it is solved, this is the result. We are not going 
to solve he actual quantum mechanics of anharmonic oscillator, but the 
results look like this.

What is the major difference from harmonic oscillator? In harmonic oscillator 
we had energy levels that were equally spaced, right. Now we have energy 
levels that keep coming closer and closer and closer as you go higher up the 
ladder. Why does that happen? That happens because of anharmonicity. 
Eventually, there cannot be any energy level beyond this, isn’t it? This is 
where all the energy levels should come together and that is where you 
should reach what is called the classical limit. And this energy difference is 
called the dissociation energy, okay.

So what is the expression for the energy? If you remember perturbation 
theory, you know, in perturbation theory, we write the Hamiltonian S, 0th 
order Hamiltonian plus first order correction to Hamiltonian. Energy once 
again is the uncorrected energy first, plus the first order correction term. 
Here also the first order correction that comes and as you can now guess, 
what the first order correction term would be. If you remember our 
experience with ro-vibrational spectrum. This uncorrected energy is v + ½, 
the first order correction term comes as a second order term in v + ½, okay. 
-v + ½, why minus, because as you can see, the energies actually go down 
as you go higher up the ladder, and this is multiplied by Xc multiplied by ṽ. 
What is Xc? It is called the anharmonicity constant.



Now what should it be related to? What is the major difference between 
harmonic oscillator and anharmonic oscillator? Exactly. A simple harmonic 
oscillator can oscillate without breaking and anharmonic oscillator -- so the 
main difference between harmonic and anharmonic oscillator is dissociation 
energy, okay. So you understand that this Xc has to be related to dissociation
energy. What is the dissociation energy for a harmonic oscillator? Infinite. 
What should Xc be for a harmonic oscillator? Zero, right, you’re right. And 
when you have some value of B, Xc also shows up. So of course, you 
understand that it is inversely proportional, the actual relationship is 
something like this. Xc is ṽ divided by 4De. So if you can determine Xc, the 
anharmonicity constant, you can find out what the dissociation energy is, all 
right. Yeah.

What shows up after solving? Yeah, yes, it comes from a perturbation 
theoretical treatment of the anharmonic oscillator problem. It’s not curve 
rating. Now for this, the selection rules looks amusing. The selection rules, as
you can see, in front of you are ΔV = ±1, ±2, ±3, and that should actually 
make you wonder, why we call this selection rule? The ±1, ±2, ±3 so on and 
so forth essentially means all transitions are possible. So where is the 
selection? You understand what I am saying? Where is the selection, why do 
we call it selection rule? We call it selection rule because this ΔV = ±1 is by 
far the most probable transition. ΔV = ±2 has significantly lower probability, 
ΔV = ±3 has significantly lower probability than even ΔV = ±2 and we’ll 
show you the evidence for that, okay.

So what you’re trying to say is ΔV = ±1, ±2, ±3 fine, but this is the order in 
which decreased improbability also takes place, probability of transition. 
Question? How to determine probability of transition? Well, again, we’ll take 
a raincheck on that question. Just believe me now when I say, probability of 
transition is proportional to square of transition movement integral, okay. 
We’re going to prove that maybe in couple of weeks. Probability of transition 
is proportional to this square of transition moment integral.

Now why is I that all transitions are allowed? Because what is transition 
moment integral, you remember, <Ψf / μ / Ψi. We’re working under the ambit
of perturbation theory. We’ve already discussed how you describe the 
Hamiltonian, how you describe the energy, how to describe wave function of 
a perturb system in terms of the wave function of unperturb system. Again, it
will be Ψ0 plus some first order correction. Now, I don’t know if you’ve 
studied this, but more often than not, what you want to do is you want to 
represent this first order correction as a linear combination of the unperturb 
wave function. Do you know this? You know this, right. Why do we do it? And 
we could have done anything, right. Why do we do it and is the statement 
valid? Can somebody answer that question?



Is it valid to write the perturb wave function as a linear combination of 
unperturb wave functions? Why is it valid? Because we have a complete set 
of wave functions for the harmonic oscillators. So anything -- so when you 
have a complete set, what you can do is, the coefficient is in your hand, 
right, so you can change the coefficient in such a way that -- again, 
somebody talked about 11:22, now it boils down to _______. You have a set of 
functions, some polynomial set, I can always combine them in many different
ways to reach what I want to fit, okay. So of course, if I write it like this, let us
say, I want to talk about the Vth level of the perturb system, okay. Actually 
what I should write it as is the unperturb wave function plus some correction 
term, right. So this correction term is the linear combination, but then I might
as well include this in the linear combination, isn’t it. This one particular V, 
these are many different Vs, Vi, so I might as well include everything and 
write something like this, ∑i, ai, Ψi(0).

Can you comment on what these ais will look like? If I plot ai versus i and I 
am trying to reach some particular Ψv, like I am trying to get the expression 
of some particular Ψv perturb system, let’s say, that Ψv is somewhere here. 
This is a V. Can I draw a plot that will kind of tell me at least qualitatively 
what the distribution of the amplitudes are? Just look at this expression, Ψv is
this and don’t forget where we started from, we started from Ψv(0) + Ψv’. 
Don’t forget Ψv’ is a small term with respect to Ψv(0). Yes. So it will be 
something like this. Is it right? Have you understood? Sure.

The coefficient of Ψv(0) is going to be maximum of course. So that has by 
and large -- not by and large -- largely it is actually unperturb wave function, 
and then we follow up on the two sides. So Ψv = 1 and Ψv = -1, the 
unperturb wave functions, they will have significant contribution, right. Ψv + 
1 and Ψv + 2 and Ψv - 2 is a little less and so on and so forth. So when you 
expand his transition moment integral, then you essentially get something 
like that. the probability also falls off on the two sides. So v + 1, v + 2, 
everything is allowed, but the probability falls off as you move farther and 
father away from V. Understood, okay.

I’ll share a couple of pages from 14:32 books where this is discussed with a 
particular example, but don’t forget that example is an arbitrator -- I am not 
done. I am not done, all right.



Let’s finish this discussion. This is what it is. So I think you already know the 
remaining part, but we’ll just go through for the sake of completeness. For Δv
= ±1, that is called the fundamental transition. ±2 is the first overtone and 
±3 is a second overtone, ±3 is a second overtone. Where have you 
encountered these terms earlier, fundamental and overtones? Soundwaves, 
right, in physics chapter of sound.



Now one thing that we need to remember, and this is very simple algebra so 
you could do it yourself, this is what we get, the energy gaps. The energy of 
the fundamental is ṽ 1-2x, it is not just ṽ. First overtone is 2ṽ (1 -3Xc). 
Second overtone in this case is 3ṽ (1 - 4Xc). So it is not ṽ, 2ṽ, 3ṽ, please 
remember that. That’s a little childish animation, but well, this is what it 
looks like, okay. So as you go higher up, the energy is more and more smaller
than what is expected.

To conclude this discussion, let me show you a real spectrum, this time of 
carbon monoxide. This is a fundamental peak at 2143. This is the first 
overtone at 4260, and if I give you these tow values, what can you figure 
out, what can you figure out? I don’t know the names of these guys. What 
can you work out if I tell you that the fundamental occurs at 2163 cm 
inwards and the first overtone occurs at 4260 cm inwards. Yeah please tell 
me, louder. Repeat the questions.

I am telling you that the fundamental occurs at 2143 cm inwards, the first 
overtone occurs at 4260 cm inwards. If I give you these values, what are the 
molecular parameters that you can work out? So if I go back to the energy 
expression, you can figure out what is ṽ, and that tells you how strong the 
bond is. You can also figure out what is Xc, right, two variables, two 
unknowns -- two variables and two equations. So you can determine both 
and from Xc you can say, what is the dissociation in it?



Last question, why do these look like this, why don’t I have one line in 
fundamental -- so I hope you have noted, how small the first overtone is 
compared to the fundamental. Now my question is, why do I have such a 
funny structure, why do I not have one line here and one line there? Because
who has said the ro-vibrational will not be observed if it is anharmonic 
oscillator, of course, it will be observed. So whatever algebra we did in the 
discussion of ro-vibrational spectrum holds here as well, okay.

And in fact, if you have a good enough spectrum, what I am showing you 
here is a low resolution IR spectrum. If I actually show you a high resolution, 
this is what it looks like. This here is a fundamental. That is the first 
overtone, you see clear PR structure, and do you see this another PR branch 
here, smaller PR branch there. Why? Again, isotopic rate, right. Isotope of 
what, carbon or oxygen? Carbon, C13 is there in small amount, right, that’s 
why you can do with C13 in MR and all. So that is what shows up in the 
spectrum as well. So see, nu has changed, nu has itself changed and also 
spacing has change, okay.

That completes our discussion or IR spectroscopy, but we still have one more
question to ask, which is very important in meteorology. The question is, 
suppose -- we know very well how to do microwave spectroscopy and IR 
spectroscopy. Now let us think of the simple non-metal H2. Is it impossible 
for us to determine the rotational levels energies and vibration energies of 
H2. From the discussion so far, it’s impossible, right, because H2 does not 
have a dipole moment. No matter how much it vibrates, it will never develop 
a dipole moment. So the way out is using the perhaps most important Indian 



contribution to modern science, that is Raman Effect, if you do Raman 
spectroscopy, then you can actually get an idea of rotational and vibrational 
levels of non-polar molecules as well. That is what we discuss tomorrow.


