
Computational Chemistry & Classical Molecular Dynamics
Prof. B. L. Tembe

Department of Chemistry
Indian Institute of Technology – Bombay

Lecture - 09
Programming Techniques 6. Functions and Subroutines, Arranging Numbers in as

Ascending Order

Hello and welcome again. In our last class, what we did was we discussed the little bit about

format statements. What the format statements do for you is to enable you to write your input

as well as output in a specific arrangement in your file right. You can compartmentalize your

columns into different ways, your different lines, so that you can read it in a systematic way

and it is useful when you have large number of variables to be written or read.

And we also started a program for arranging numbers in an ascending order. So what we said

that if you want to exchange two numbers a and b, you just cannot make a=b and b=a because

if you do this then both a and b will have the same value. The only way you do it would be to

assign a temporary variable in which you store the initial value of a, then say a is=b and then

b is=the temporary name into which you had stored the value of a.

So to arrange several numbers in an ascending order what is our strategy? The strategy is let

me make it bigger.

(Refer Slide Time: 01:32)

So the strategy would be to read all the numbers then arrange them in an ascending order,

selecting pairwise, starting from the first pair then your final array would be a set of numbers

in an ascending order. So what is the first thing we need to do? We need to read all the

numbers, so that is what you will do now.

(Refer Slide Time: 01:48)

So how you will read all the numbers? So to do that first thing is I have a dimension

statement. It is an array variable, so there is an array a of 500 values and result which is also

an array of 500 values. I will use this result array to store my a values in the result, so that I

can work with the result keeping the a array unchanged. I am going to read all my data from

unit 15, so what have I had open unit=15 file=input.

What this does for me? The file input is associated with the number 15 in the program.

Similarly, the file output is associated with line number with number 16 in the program. So

before I start reading from the files, I want to know how many numbers are there to be read.

So I will write in my program this particular line, write star, star input n the number of points

on the screen, number of points means number of data points to be read.

So when the program executes this particular line, it expects you to give that input n, so read

star, star n. That means this n which is the number of data in your file will be read from the

screen. Once this number is read, I want to write all the values of that array a*the array result.

So what this do loop does for me, do i going from 1 to n, n is already read from the screen. So

do read 15, star ai, so from file 15 which is input it will read the value of ai.

Then, the result i is set=ai okay, there is a small error here. There should be no space between

this a and i because if there is a space the program will not like it so since there is no space

between a and this bracket this also should be a space i bracket complete a bracket i bracket

complete. There should be no space, so make sure when you execute, do not leave any spaces

when it is not indicated in my original variable end do.

So this do loop reads all the value as of ai from your file number 15 and in the result variable

it puts all the values of a into that result variable. I am going to work with the result variable

and keep the a intact because I do not want to lose the original order. So I am keeping the

information of the original array intact.

(Refer Slide Time: 04:37)

So now let us see what is the, the next thing will be I want to arrange them. So now I am

going to use two do loops for this. There is now outer do loop do 100 i going from 1, n-1. If n

is the number of data points, my i will take only values up to n-1 okay. So and do 100, what is

the meaning of this do 100? Repeat all the statements up to this 100 continue. How many

times? Start with 1, 2, 3, up to n-1.

So my second do loop starts from j going from i+1 to n. The second do loop is up to line

number 50, do 50 means repeat everything up to line 50. How many times? Start with j=i+1

and all the way up to n. So if i is 1, this second 1 will start with i+1 which is 2. So why is it I

am doing this because if I have read the first number, I need to compare that number with the

second number.

So I cannot compare the number with itself, so there is a difference in the do loop. The first

loop goes all the way up to n-1, the second one starts with 1 index>i and ends with n. So this

is my two do loops. So now what I am going to do, my first variable is I, so this small I have

written result i is my first value of the result because i=1, that value I keep in this array called

small then I compare result j with small.

Because small is already result i, so if result j what is j first time? j=2. So if result j which is

second one if it is<small then I want to exchange these two because I want to arrange them in

an ascending order. The smaller ones will be written in an earlier value of the array and the

larger ones will automatically go into larger values. So small is=result i. If result j is < small

then result i becomes result j because result j was a smaller number.

And now result j is small because small is original value of result i. Remember, I already

discussed in the last class, if you do not have this small as a second temporary variable if I

say result i=result j and result j=result i then both result i and result j will have the same

value. So rather than exchanging I would have made both of them equal so I need this

temporary variable small so that I can distinguish between the initial values of result i and the

final value, so this if statement ends here.

If the result i is already<result j, no exchange occurs but if the result i is>result j then the

greater value is put into a larger array variable. So it ends this do loop. Both the 50 do loop

ends here, so at the end of the first do loop what will happen is that result i will have the

smallest value among j=2 to n. So the first value will be the smallest value. So in the next

loop now i=2, so when i=2 j will go from 3 to n.

So when i=2 small will be result of 2 then it will exchange 2 and 3, 2 and 4, 2 and 5 until the

result 2 will be the smallest value between 2 and n. So the first loop gives the smallest value

in result 1, the second loop will give the next smallest value in result 2, the third loop will

give the third smallest value in result 3 and so on and so on until all the smaller values are

arranged in an ascending order from 1 to n-1.

And if I do up to 1 to n-1 automatically the last value would be the largest value, so the last

loop will finish without doing anything because already the last value is larger. So in the last

loop, I have this n-1 if n is 10 let us say it will be 9th, so the 9th value will be compared with

10, but 10 is already the larger value because the 9th one is the smallest among the first 10, so

the loop will end.

And what I will do at the end of these do loops is write my result on the screen now. In this

case, do 200 j going from 1 to n write star, star result j. Instead of writing on the screen,

suppose I want to write it in unit 16, I will say write 16, star result j. This way I will write it

in file which is 16. So instead of just writing in arbitrary format, remember the second star

represents the format.

Instead of star suppose I have some format, suppose I want to write all those numbers in a

given format then I will say write 16, say 200 result j and that 200 will be the format number.

That format could be say E12.4 that we considered and if they were all integers I will use an

integer format. So you can write in whichever format you want and we have already

discussed the format statement.

So this is how that program will execute and we will also practice this in our practical

session. We will practice this in our practical session.

(Refer Slide Time: 10:09)

So at this point what I want to do, I want to discuss a new topic which are categorized as

functions and subroutines. Now what are these functions and subroutines? So you will know

that in your calculator in your scientific calculator there are functions called cos, sin, log,

exponential. These functions are already built into your calculator. So suppose your angle is

30 and you want cos of this 30, all you do is to press that cos and the cos value will come on

the screen.

So the same thing you can do in programs as well. So you may want your own function, you

may want cos square x somewhere, you may want sin square x, you may want some powers

of functions, so you will be able to write your own functions based on your own

requirements. So as I have said here many calculations need to be repeated again and again in

a program. See what are the examples, sin, cos, exponential and so on, square root.

These are already there in your fortran compiler but suppose you want to calculate some

Legendre polynomials; these are polynomials which will come when you study orbitals. So

the calculator does not have these functions nor your program has that function, so you will

have to write a subprogram which calculates that function for you. Another thing you may

want to do you may want to find the maximum value in a given array.

You may want to find roots of some equations, you may want to calculate integrals,

derivatives, matrix inverses, diagonal values of matrices, all these you need again and again

and every time you need a matrix inverse, you cannot write a separate program. So if you

write a program which can be used again and again, so that is what a subroutine is.

Subroutine is a part of the program which is in a sense separate in itself but it will link to

some main program.

So just as in your calculator the functions cos, sin, log they are all part of the calculator.

Whenever you want that cos you just press cos you will get it. So in the same way your

program will have the main program which does all the operations you want and functions

and subroutines which will give you whatever you want as a part of that program separate

part of the program okay.

So now again what is the reason. I have mentioned here; you cannot write a program each

time you need to perform these operations okay. So therefore now we will see what is the

structure of this function and subroutine?

(Refer Slide Time: 12:37)

So now I want to illustrate this using this function called sin new okay. So sin new is a new

function, not your calculator function okay. So the program starts I will say write star, star

input the value of the variable x in degrees. So as soon as you execute this program, the

statement input the values of variable x in degrees will appear on the screen. Then, this read

star, star x will read the value of x in degrees.

Now many of these programs use the value in radians. So first thing you do calculate

x=degree*pi/180. What this will do? It will calculate the value of x in radians now. So once

this is done, the next line is y is=sin new x. Now this is a function, remember I mentioned

that there are functions and subroutines. The moment you say y is=sin new x, so this program

will look for this sin new okay.

So what is this sin new? So I will end this program by this end statement. Then, I am writing

this function statement. So whenever this is a new variable which the program does not know,

it will understand that this is some function of x, so it will look for this function. So how does

this function work? Function sin new of x, this is a function statements. So it is a part of the

program, separate part of the program.

So function sin new x, so what will this function do? So when you say function sin new, it

knows the value of x, so it will calculate this sin function through a Taylor series. Remember,

in our earlier program just see this line, you had written a program for an exponential

function e to the x. How did we calculate e to the x? e to the x was 1+x+x square/2

factorial+x cube/3 factorial and so on.

So what is the sin function now? Sin x is x-x2/3 factorial+x5/5 factorial-x7/7 factorial, so sin

function is like an exponential function except that the sine of alternate terms are + and –. So

similarly if you already have that program just as we have an exponential program, we can

write a sine program. All those lines will be written here, so once you call this function, it

will calculate all the values.

And the sum of all those will be your sine function that is x-x cube/3 factorial and so on that

is your sum, calculate that sum, equate sin new=to that sum return and end. So what does the

program do? y=sin x is goes to this function, calculates all these values, equates sin new to be

the value of the function and returns that to y value. So now what is y? y is nothing but it is a

sin function calculated.

Why I have called it new? Because you have written your own program to calculate the sin

function but we also know that fortran also has a sine function built into it just as your

calculator has a sine function built into it, so y is a sine function calculated by you using your

functions of program and z is the value of sin x calculated from the fortran compiler. So now

what you will do as an output?

Write star, star x sin x and sin new x, on the screen you want to write the original value of x,

the value calculated from the fortran compiler and y which is your own function. So it also

allows you to check whether whatever program you have written is as good as the built in

program in the fortran compiler or your program may be better or your program may be

worse as well so it allows you to compare.

So in this case, sine was already known, so this is a way how you will calculate a function

using a subprogram. So let us now summarize again what this function is okay.

(Refer Slide Time: 16:52)

Then, so what have we done here, we have divided the program into a main program and

subprograms. Now what is that main program? Now you see here, in the main program,

program for sin new everything up to the end is a main program. Whatever comes after the

end, these are functions or subroutines. Right now, we have considered one function, now

suppose you have two more functions.

So if you have two more functions, so after z let us say a=that some other function, b is=some

other function, the other functions will come after the first function, you can have any

number of functions in a program. So just that you have functions, you have also subroutines.

We will consider that shortly. Now let us first summarize what is the structure of this

function.

You have already divided the program into a main program and subprograms. Subprograms

are functions and subroutines. We have already discussed the function. So how does a

function work? Invoke the function in the main program by the statement y=function name x.

Remember, we wrote y is=sin new of x instead of sin new it could be function name. This

function name is any name, any function.

So this is how you will invoke the function in your main program and in the function name

subprogram, the starting line will be function=function name x. In our earlier case, it was sin

new x, so in the function name, it will use the value of x to calculate everything and final

statement in the function would be function name=sum, that was the actual value and return

and end. So whenever you invoke, what do you mean by invoke?

You are basically accessing or calling that value. So when you use this statement, it will go to

this function name, do all the things and return with the actual value of the function, it will

return. So remember I have written here return and not stop or end because if you say stop it

might stop the entire program. So remember that in functions or other subprograms, you will

not have a stop.

Stop means everything will stop okay. So return and end, this is the structure. So what is the

main difference between a function and main program? In the main program, you will have

stop and end. In the function, you have return and end and in the function, function name is

associated with the value. The function name is associated with the value, so that is the nature

of the function.

And the function will always return to you one value but many times suppose you want to

invert a matrix, the result of your operation is an entire inverse matrix. The inverse matrix

will be end by end, so you cannot use a function for large number of data. So therefore what

you use is called a subroutine okay.

(Refer Slide Time: 19:41)

So what is a subroutine now? Subroutine is accessed or invoked in the main program by a

call statement. In this case, I said call order a result n. So this particular subroutine whenever

you have a call statement it is a subroutine not a function. In a function, it was y=function

name into bracket x. So in a subroutine the difference is subroutine is always called it is

called by a statement call.

So call order a result n. So how will the subroutine begin now? In the case of a function, it

began as function, function name of x. The subroutine will begin as the subroutine;

subroutine order a w kk. So let us again summarize what I have done. Whenever you want to

invoke a subroutine, subroutine is like a subprogram which comes at the end of the main

program. It will have a large number of lines okay.

So when I say call order that program will go to the subroutine order, do all the calculation

and return to the main program okay. So now we will discuss remember we have already

discussed a program to arrange numbers in an ascending order. So what I will do in this

particular lecture is to use this arranging numbers in an ascending order is a subroutine not as

a main program.

So before I go to that let us make certain comments about subroutines and functions. So in

the function and subroutine, there will be again several variables. So the names of the

variables in the call statement and subroutine, names and variables in the program can be

very, very different okay but whatever is passed on to the subroutine that is now look at the

statement, call order a result n.

So the subroutine should understand what is a, what is result, what is n. These 3 are the things

which are linking the subroutine to the main program. So these should be having the same

meaning, but everything else could be different okay, so variable types in the parentheses

should match okay. If a has a dimension 100, suppose this a has a dimension 100 in the main

program, then in the subroutine also a should have a dimension 100 okay.

If result has a dimension 10, subroutine also should have the same dimension and whatever is

the type of n suppose n is an integer in the main program, in the subroutine also it should be

an integer. So these should be matched, the rest there is complete freedom.

(Refer Slide Time: 22:26)

So now let us look some more details now okay. So when the calculations are done in the

subroutine, it again closes with a return and end statement not like a stop. Remember, in the

function also you had a return and end, subroutine also has a return and end that is how you

will do it. So there should be no stop and end statements but newer compilers may not require

even a return.

So you may have newer compilers where you say you write the subroutine and just return

okay. So in the practical session, we will see this.

(Refer Slide Time: 23:03)

Now I will look at some detail now okay. Some more details, so one of the question is in the

main program we have several line numbers and several variables. For example, line number

10 will be in the main program, variable a b c d will be in the main program but in the

subroutine these variables can in principles be very, very different. You can have the same

variables in the main program as well as subprogram.

But unless they are passed through the parentheses they will have a different meaning. So

what is this meaning now, only variables passed through the parenthesis of the subroutine

statement are common between the main program and the subroutine okay. So there are two

ways of doing it, one is through the statement of the subroutine. So look at this, when I say

call order a result n, this a result and n were common between subroutine and this main

program.

These 3 are common; the rest can be very different, so one way to pass information from

subroutine to the main program is through all the variables in the parentheses of the call

statement, one through the parentheses but suppose you have many, many variables you want

to pass through it becomes too much write 20 or 30 things in this bracket, so there are other

ways of doing which is called a common statement.

So that is what is written here. So you can convey information between main program and

subroutine through the things that are written in the parentheses one option. The other option

would be through a common statement. We will also discuss a common statement okay. That

is my next discussion. So I again summarize either you have a common statement or you pass

the variables through the parentheses. Two options to convey between the main program and

the subroutine okay.

(Refer Slide Time: 24:55)

So now let us now arrange numbers in an ascending order using a subroutine okay. I do not

want the main program to do it; I want a subroutine to do it. So what is the difference? So the

difference is my main program will be so I again I have a b and c, these are 3 arrays. Suppose

I want to arrange both a and b in an ascending order or suppose I want to arrange both a b and

c in an ascending order.

I do not want to write the program 3 times that I wrote earlier. So I want to write a subroutine

which arranges the numbers in an ascending order and call that subroutine 3 times. So that is

the main advantage, write the program once and call it as many times as I want in the main

program. So again so there are 4 objects here a b c are dimension variable, result is 100, so

what I will do?

Open 18 19 30 these are all units, 18 will open unit input 1, 19 is file 2, 30 is result 1, 40 is

result 2 and so on, write number of data points in file input 1. So what will this read now?

Read n from the screen, n will tell me the number of data points from in the screen.

(Refer Slide Time: 26:16)

So what it will do? Now read 18, star ai i going from 1 to n, suppose n is 20 from that file 18

it will read all the 20 data points. Now I will say call order a result n, so a was my array,

result is a final array into which it is in order and n is the number of data points. Call order, so

it will arrange them in an ascending order, write 30, star result i, i going from 1 to n. It will

write the result. In this case, it will write on the screen.

Now I want to arrange data in file 2 in an ascending order, so what do I need to do? How

many data points are there in file 2? Read that m and read all the data from that file 19 now

because this is a second file again call order. So now first time it arranged all the things in an

ascending order of variable a. Next time, it will arrange b in an ascending order, b was read

from a different file, it called a subroutine again.

When you call the subroutine the second time, I had b in place of a, result is the same, m is in

place of n. So it is a different number of data points, different array and I want to arrange

them in the ascending order and write result 1, n. So it will arrange the file b and the program

will be over. So the next thing, the next slide will tell me how the subroutine is written. So I

will what I will do I will conclude this lecture here.

Next time, again I will begin what is the concept of a function and a subroutine. This is an

important concept, it takes a little practice to understand, then how I write the subroutine,

how I communicate between the main program and the subroutine and then we will repeat

that and show you how the subroutine looks like. In this case, the subroutine is to arrange

numbers in an ascending order.

So we will discuss different types of subroutines and functions in the next class. So I will

conclude here. Thank you.

