
Computational Chemistry & Classical Molecular Dynamics
Prof. B. L. Tembe

Department of Chemistry
Indian Institute of Technology – Bombay

Lecture - 08
Programming Techniques 5. Formats, Functions and Subroutines

Hello and welcome to today’s lecture. So before I start with today’s material, let us review

what all we have done so far in our course. First thing that we did we did elementary

programming. What is elementary programming? Whatever formulae you have you want to

calculate them using the computer. So for that you need a language which converts all your

mathematical language into a programming language.

For example, e to the x, in normal writing we write e raised to power x, in a programming

line there is nothing like raising something to the power. So we write it in the program as x

into bracket x complete bracket. So these are simple translations of formulae into a

programming language. So I have been using fortran as a programming language. So in

addition to the simple formula translation, what we need is the special techniques that are

relevant to the programming language.

One of them was is do loops. So what do the do loops do? Do loops allow you to do an

operation any number of times as you want, so the statement was do 10 i going from 1 to n.

So that means all the statements up to line up to a statement defined by line 10 will be

executed n number of times. Those were the do loops.

(Refer Slide Time: 01:38)

Then, we had if statements. What do the if statements do for you? It is a condition, if a is>b

you do something, if a is<b you do something else, if a is=b you do something else. So this is

basically branching. Your program is going from top to bottom and at some stage if you want

to branch, you will lose an if statement. So then the crucial thing was input and output. What

are these inputs and outputs?

Suppose you want to read a lot of data into your program, you can always read it from the

screen but reading from the screen can be very tedious because suppose you have 100

numbers to read and you make a mistake in the 94th number, you will have to type all the

things again. So instead of reading and writing from the screen, it is better to read and write

from files.

So we also discussed how to open a file from a program using an open statement, open and

unit numbers. We have done that also reading and writing from files. Then, most of our

operations are in a Linux operating systems okay like when you compile a program with

gfortran. So this is a compiler in Linux operating system. So you use Linux operating system

to compile and execute your programs.

Then, since we are using fortran as a language, there are several rules for writing fortran

statements. One of the first rules is that all the characters in the line begin from the 7th

column okay. The first 6 columns have to be left blank and if one line continues into the other

line, you put a in the 6th column you write 1, 2, 3, or some characters so that it continues to

the second line.

Then, line numbers were written in the first 5 columns. Remember, all line numbers are in the

first 5 columns and one of the other rules was that all variables in the program which start

with i, j, k, l, m, n these are all integers and all the variables that begin with a, b, c, d, e, f, g or

x, y, z they are all real numbers. So the programming language gives you this facility to make

some numbers, integers, make some other numbers real, so that you do not have to declare all

these statements.

In other programming language, before you start writing the program you have to declare

everything. So fortran enables you to have this default declaration statements. Then, finally

we had one practical session. What we did in the practical session was we executed a simple

program. Then, we learnt about compilation, we learnt about execution. There were some

errors also in the program.

We will correct that error then we take up the next practical session. So what we will do today

that is outlined in my next slide.

(Refer Slide Time: 04:24)

So what we will do? Today, we will discuss a little bit about format statements. Then, we will

consider a program to arrange numbers in an ascending order. So this is one of the uses of

programming, you can arrange things the way you want. Then, we will discuss the important

concepts of functions and subroutines. Functions and subroutines are subprograms which

makes your program stronger by compartmentalizing all your tasks into different units.

Just like an institution works with several departments, your different programs are like

different departments. Each one will do its own function and return it to your main

coordinating program. Then, there is also a common statement, we will illustrate that. It is

very much of use when you do subroutines and functions. Mainly, it is used for subroutines.

Then, we will discuss differences between functions and subroutines. So let us now begin

with a format statement.

(Refer Slide Time: 05:27)

So you remember that when we wrote something or write something from the screen, we said

write star, star x1 x2 x3 x4. So what was the meaning of star, star? Star, star means the whole

thing was writing on the screen or the whole thing was read from the screen. Now in this

statement what I have is write 12, star x1 x2 x3 x4. So what this does? This file this 32 this is

a number this is connecting with some file number.

So remember open unit=32 file=output.dat or open unit=31 file=input.dat. We have seen

those open statements which connect a number to a file name in your directory. So this way

all the output as well as input can be written in a file. So that your whole screen remains

uncluttered because if you write 1000 lines on a screen, your screen can only see some 20 or

30 lines and you will miss all the earlier data.

So reading and writing from files also we have studied but now we want to study what is the

format because the second star here, the second star will refer to a line number. Now look at

this line, what this line says is read 31, 22 i1 i2 i3 i4, so this is my read statement. So this is

going to read information from file which is connected with this number 31, that is the file

with which I am connecting, 31 is the file.

You have opened some unit with some file name which is connected with 31, 22 is a line

number, look at this. I have 22 as a line number that 22 gives you the format in which the

data is written. So in this case my data is i1, i2, i3, i4. It is going to read these 4 numbers.

These 4 numbers are integers because I begin with i, each variable begins with i here i1, i2,

i3, i4. So since there are 4 numbers, so I am giving this format, format 4I4.

What this 4I4 means? I4 means each integer has 4 spaces to write the number. This 4 means

there are 4 integers like that. So 4I4 would mean I can write 4 numbers in that line and each

number will have 4 spaces okay. So that is what I have written here, I4 means there are 4

spaces for the integer and since there are 4 integers, I will give 4I4 as my format. Format

really is the structure in which you want the input to be read or the output to be written.

So it gives you a better control over your entire line space in your input or output. Otherwise,

if you instead of 31, 22 suppose I had said 31, star that means I can give those 4 integers in 4

different lines. I may be able to separate them by comma, so when I give a star here I am

reading from the screen and the total format is arbitrary whereas if I give a format here then I

cannot write arbitrarily I should give exactly in the format given.

It is like in a classroom we have 10 chairs in a row that means these only 10 people can sit in

this row, not the 11th person. So like that format gives you an arrangement of your line into

which you can write the information or from which you can read the information. So this

particular statement I considered it was for integers. Now suppose I have real numbers, how

will I read real numbers or write real numbers?

(Refer Slide Time: 09:23)

That is given in the next line. Now look at this, this particular statement I say write 32, 24 x1

x2 x3 x4 x5. So these x1 x2 x3 x4 x5 are all real variables. So real variables means what

everything will have a decimal point. This we call as real number. An integer has no fraction,

so it is only a full number. So whereas a real number has a fraction, so that fraction I can

write in many ways. I can write it as 1.23 or I can also write in an exponential format.

That exponential format is useful because suppose I have a number which is 0.0000 with 22

0s then followed by some numbers. Then, it is not possible for me to write so many 0s in my

output. So it is best to write it in the exponent format, so that is what we are going to do. So

these are written, so since these are 5 numbers, my format is given in line number 24. So I

say write 32, 24 and 24 is the format statement, 24 format 5E12.4.

So what is the meaning of this 5? This 5 means there are 5 numbers which are going to be

written and E12.4 it means that it is an E format. E format is an exponential format, 12.4 now

we need to understand what is this 12.4? 12 means total 12 spaces are allotted to that number

and 0.4 that means there are 4 numbers after the decimal point. Look at this last line. This last

line says -20.4433*E-05.

So these are the 12 spaces, since I have 5 numbers I have given 5 times 12, so each number

takes 12 places. Now let us see how the 12 places have been taken – is one place, 2 is one

place, 0 is third place, point after the decimal points you have 4433. So 4 after the decimal

point, one space for the decimal point, 0 and 2 these take up two more, then this –sign, so -20

point, these take up 4 values, 4433 takes 4 values, then E-05 these take up 4 spaces.

This tells me that this number is -20.4433*10 to the power of -5. This E really means 10 to

the power. So 10 raised to -5, so my first number is -20.4433E-05, my second number is

233.7455E to the +04. So what is the meaning? The second number is 233 point. That means

there are 233.7435*10 to the +4, so which means what this format allows you to do, it allows

you to keep only 4 numbers after the decimal point.

And since there are 5 numbers like that first takes up 12 spaces, second one take up 12 spaces

and so on so there will be total 5 numbers. So the whole thing will take up 12*5 5*12 that is

60 spaces. So this is how it will write. If you had instead written write 32, star x1 x2 x3 x4 x5

it would have written first number and given some arbitrary spaces of the first number, then

the second number, then the third number.

The computer will give its own format whereas here you have arranged them in your own

format. So while this is good there is one problem. One problem is that between the first

number and the second number there is no space to make a distinction between two numbers.

I really we would have write -20.4433E-05. Then, suppose I had one or two spaces here then

I could write the second number.

Then, again some spaces some more numbers, so it would be a better arrangement like when

you arrange several chairs in a row you keep some space between the chairs. So how do I do

that? That is indicated in the next slide.

(Refer Slide Time: 14:00)

So look at this now. I have illustrated many things in this slide okay. Now let us before I

discuss the slide let us see what are the advantages and disadvantages. Advantages is that you

can write it in a very nicely ordered format just as you arrange your room very nicely you can

arrange. The disadvantage is that when you input the data you should know what the format

is because if you do not know the format in write in different ways, it will take some arbitrary

values.

So the way you give input you should give exactly the way the format is written. So the only

disadvantage is you should remember exactly what the format was but with practice it is not a

major issue because you will have some each one would have his own standard formats, you

can read your data in that format, you can write in that format. So you will get used to it. So

only disadvantage is you have to remember, advantage is the nice arrangement.

Now let us take this particular next example. The next example says write star, 33 number.

Now what is the meaning of the first star? First star says that you will be writing it now on

the screen and not to a file. So write and what is the format for that number? Format i3, so the

meaning of i3 is there are only 3 spaces given to that particular number. So you will write that

number in that format in 3 spaces.

Now let us take this example, suppose 33 is the line number and format i3 is the format into

which you want to write the number. Now look at this next one, c means comment card. We

all know that in any fortran program you begin everything from the 7th column. In case there

is a character c in the first column, it is a comment. Now what is the meaning of this

comment? Suppose the number I want to write has the size of 98477.

So I want to write it in i3 format, there will be a total confusion because you have said that

the format can have only 3 characters, 3 spaces but the number is very large. So computer

will be in deep trouble which number should it write. Should it write 477 or should it write

984, both would be wrong. So therefore the format should be such that it accommodates all

possible numbers that your output can be.

If the output has very large numbers, so then you should give a format which will have so

many spaces as many are needed by the number okay. So this is one point, so one of the

disadvantage of a format statement like i3 is that if the number is more than 3 digits you

cannot use this format. So all this you have to keep track when you give your format. Now

we will come back to my earlier thing.

Now suppose I want spaces between numbers for clarity. Remember, we wrote 5 numbers

earlier. Now let us also write 5 integers this time, let my 5 integers be n1 n2 n3 n4 and n5.

These are my 5 integers, I want to write them on the screen and I want to write them in a

format such that between every two numbers there is two spaces. So now I have given this

format statement.

As I mentioned before, the format statement always begins with a line number and this line

number should be in the first 5 columns. So I have given 39 in the first 5 columns then the

format into bracket 5 into bracketed I5, 2x bracket complete, bracket complete. So one

formula you should remember or one thing you should know. As many write brackets are

there you need so many left brackets. So what I have done since there are 5 numbers, I have

given this outer 5.

Then into bracket that is I5, 2x. What is the meaning of I5, 2x? That means I5 is the space

required for the integer, 2x, 2x means 2 blank spaces and bracket complete. So what is in the

inner bracket? I5, 2x that means 5 spaces for the integer and two blank spaces bracket

complete and 5 times to the whole thing. So that means you will have 5 numbers, each

number will have 5 spaces and 2 blank spaces after the number.

So all this is enclosed in the outer bracket. So the format is there are 5 numbers to be written

and how do you write each number, first 5 digits are your numbers and the next two are the

blank spaces. So that is my format statement and the next line is write star, 39. So this 39 is

the line number, the format statement number can either come before this write statement or

after the write statement.

There is no rule that the line number should be after the write or before the write, you can

write the format statement wherever you want. A good strategy would be to write all the

format statement at the end of the program so that it does not clutter your program

significantly. So now let us see how it will write these 5 numbers. The way it would write

these 5 numbers are I am just since it is a program, I have given a comment the way it would

write the first 5 numbers 1, 2, 3, 4, 5 and two blank spaces.

Then, the next 5 numbers, two blank spaces, the next number, then next number written in 5

spaces, two blank spaces, next number 2 blank spaces, next number and 2 blank spaces. In

this case, all the 5 numbers were 5 digit numbers. Suppose some number is a 2 digit number,

then it would use suppose instead of 77777 I had only 77, the way the program should write it

will not write anything in the first 3 and it will write 77 in the last two columns.

So you do experiment with this, what I recommend to you, you write a program, use different

formats, so we have discussed only two formats. The E format for real numbers and the

integer format. There are other formats as well but we need not worry too much because if

you know one format to write real numbers and another format to write integers that will

suffice that will be sufficient for most of our work.

But sometimes you may want to write characters into the output. Then, what you have is

called a character format. So as and when we need it, we will use that character format in

reading as well as some times you may want to read a name of a person into a program, you

may want to write name as an output, so there are other formats, we will use it as and when

we need it or you can just look through how to write characters in fortran.

Now to summarize again what we did 2x refers to the 2 spaces after the number and instead

of 2 spaces suppose I wanted 5 spaces between numbers, I will read 5x okay. So this is what

is the summary of the format statement. So from now on what we will do, we will not put too

much effort into format or types of format. Our main purpose is the logic in the

programming, so we will concentrate not too much on formats but go through the logic of

programming.

(Refer Slide Time: 21:11)

So the next thing I want to do, I want to discuss a program. It is a very simple program but

there is a main idea in this program. We want to arrange numbers in an ascending order, some

order, it could be ascending order, it could be descending order okay. So now before we go

into this let us see what is the logic when you exchange two variables. Suppose I want to

have a number a and b, there could be some values for a and b.

I want to exchange the values of a and b, suppose a is 4 and b is 3, I want a situation where a

becomes 3 and b becomes 4. So how do I do it in a program? So what is the first thing you

may want to do suppose I want to exchange a and b. The simple idea would be a=b and b=a.

This is how a normal person will do but there is a major problem with this. Let us understand

what is the problem.

So let us say a=3 and b=4, then my first thing would be a=b. So what it has done? a was

already 3 but when I say a=b b was 4, so it makes a=4 okay. So in the next line says b=a, now

b=a but a is already become 4, so what this will do, it will make both a and b=4. So the whole

idea that you wanted to exchange a and b is lost because whenever you write a statement a=b

what it does is it replaces whatever original value of a by the value of b.

So since b was 4, a has become 4, now next line, next b also=4. So rather than exchanging

anything, all you would have done you have made it both a and b as 4. So this is not a correct

way to do it. So the correct way to do it is to use a temporary variable. So let us say a was 3

and b was 4. Now I said temp=a so that means this temp has the original value of a into that

variable, so temp is 3.

Now next line is a=b, so b was 4 now a becomes 4. Now in the next line is b=temp, now b

becomes 3 because temp was already storing the original value of a. So what does this

illustrate? Whenever you want to exchange two objects in a program whatever you want to

exchange one of them you save in a temporary location or a temporary variable, then you

exchange them so that the final result now a and b would have a different order than the

original.

So remember whenever you want to exchange, the first variable you have to save it in some

temporary location or as a temporary variable okay. So now this idea is very crucial. I shall

use this idea to arrange numbers in an ascending order. Now that is my next program. So let

us start arranging numbers in an ascending order.

(Refer Slide Time: 24:02)

So what is the strategy before you actually arrange? Let us see what is the strategy. What I

will do, strategy would be first you have to read all the numbers because you want to arrange

them in some order. So you have to reach them in all the numbers. So how will you reach so

many numbers, you read them in an array. Remember we have already discussed arrays, array

variables.

You will read all of them in an array because in an array each number will be assigned with

one of the array variables. Suppose there are 10 variables in an array a1 a2 a3 up to a10.

Then, these 10 are the variables. Then, I can arrange a1 in place of a2, or a10 in place of a3. I

can arrange easily in a do loop. So I need to use a dimension variable to read all the numbers.

Then, to arrange them in an ascending order I shall use them select them pairwise.

Because at the same time I cannot select all the numbers, so I will take two at a time and if I

want in an ascending order I will start keeping the lower numbers in the lower values of the

array and higher numbers in the higher values of the array. So I will keep on pairwise I will

compare, exchange them so that the final thing would be entire sequence arranged in an

ascending order.

(Refer Slide Time: 25:25)

So let me now start the program. So this is my program to arrange numbers in an ascending

order. So what I will do here, first line would be I need to declare a dimension. So dimension

a500 result 500, I just have what I have done I have given an extra result as a variable so that

I want to keep the original array as it is and in the result I want to rearrange numbers okay. So

since I want to read several numbers and I want to read it from a file.

I do not want to read from the screen because as we already saw there if there are 100s of

numbers there could be mistake in typing so I will open a unit, I will call it 15 file=input.

Then, I will open another file, I call unit=16 file=output. So now I have an input file, I have

an output file, now I want to read all these numbers. So before once the program executes it

will write on the screen input and the number of points the number of numbers on the screen.

So first thing the program once you this line, on the line you will see input n the number of

points on the screen so then the program will wait for your input. So your input say n, so let

us say n=10, you want to arrange these numbers in an ascending order. So 10 numbers you

want to read from this 10 is read from the screen. Now you will read all these numbers from

that file file=15 okay.

So this is just the part for reading the numbers from that file. So in the next class, I will

execute the logic for arranging the numbers in ascending order. We will conclude this session

now and in the next session I will begin with this particular slide and we will review what we

have done and we will start again with the session of arranging numbers in an ascending

order.

