
Computational Chemistry & Classical Molecular Dynamics
Prof. B. L. Tembe

Department of Chemistry
Indian Institute of Technology – Bombay

Lecture - 32
Classical MD-5, Execution of Programs on Liquid Argon

Hello and welcome to this lecture on Monte Carlo simulations. In the last lecture, we

considered several details of molecular dynamics, not only we discussed the algorithm; we

also defined what are pair correlation functions that is the radial distribution function as well

as the time correlation function. So this time, we will do what are called Monte Carlo

simulations.

And Monte Carlo simulation really mean simulations which use lot of random numbers in the

simulation algorithm.

(Refer Slide Time: 00:46)

So they will not use equations of motion. They will just use random numbers to move all the

particles based on an algorithm and the term Monte Carlo came because of the casinos in

Monte Carlo but they could have also been called as Las Vegas or any other name. So the

correct name would be Metropolis Monte Carlo because it was Metropolis and others who

gave that algorithm.

So another name for Monte Carlo simulation could also be stochastic simulations. Stochastic

means any process that uses random numbers. So what are these simulations now or what are

the uses? There are many, many types of Monte Carlos okay.

(Refer Slide Time: 01:27)

So this kinetic Monte Carlo can be used to simulate an activated process okay or a process

which occurs with an exponential probability. An activated process occurs with a probability

of e to the –energy/kT. So this is an activated process. So there is also what is quantum Monte

Carlo that can be used to calculate electronic structure okay. Now there is also what is called

diffusional Monte Carlo. It solves this time dependent Schrodinger equation.

But we are not interested in all this (FL). So our interest is in liquid state simulations. So what

we do, we will just consider classical liquids and how to simulate the structure of that liquid.

So Monte Carlo simulation uses random numbers, so therefore they will not tell me anything

which is a function of time. So they will only give me the structure or the equilibrium

distribution function okay.

(Refer Slide Time: 02:24)

So let us see what is the strategy here. So this particular Metropolis Monte Carlo, you can see

that paper in journal of Chemical Physics, volume 21, 1087, 1953, a very remarkable paper

okay. So their aim was to calculate the average energy of the system by moving all particles

randomly okay. The strategy is take a set of configurations, move particles randomly and see

whether after you move the particle, the new move is acceptable or not so okay.

So once you find out whether the new move is acceptable or not, so for each step you will

have physical quantities like Helmholtz free energy or internal energy or every physical

quantity will have a value at each step. When you average over the entire configuration and

divide by the number of steps, you will get the average value for that okay. So this Metropolis

Monte Carlo follows the NVT ensemble.

That is the number of particles is fixed, volume is fixed and the entire calculation is done at a

fixed temperature okay. So the Monte Carlo simulations correspond to NVT calculations

whereas the molecular dynamics correspond to NVE. That is a different ensemble because

normally temperature should not be fixed in a molecular dynamics, so that corresponds an

NVE ensemble.

So this is my canonical ensemble, averages can be calculated at the end of the simulation by

just summing over individual steps.

(Refer Slide Time: 03:59)

So now let us see the logic of the Monte Carlo simulation. So I start with step 1, go to step 2,

step 3, step n, do this entire simulation. To go from step 1 to step 2, I need I use what is called

a transition probability okay. So this is essentially a stochastic algorithm. The essential

feature in this stochastic algorithm is the transition probability from step 1 to step 2. So how

do I calculate the transition probability?

So this is the strategy, you have an old configuration which is determined by this blue dots

and each of the particle I will move a little bit. I will move a little bit in different direction by

random moves. How do I generate these random moves? Generate random numbers in the x

and y and z directions and move that a little bit. So you can either move all particles at a time

or you can move only one particle at a time.

So once I move my particles, I have got a new configuration. So V old is the potential energy

of the old configuration. V new is the potential energy of the new configuration. That is V old

is of this original dots and V new is the all the new positions. So when I have two energies

now, so what is the strategy? If the new potential energy is<the old potential energy accept

that move okay.

So whenever I have a new energy<the old that is an acceptable move. Now if the new

potential energy is>the old potential energy, do not reject that move okay. If you reject that

move, that will not be correct but accept that move with the given probability. So how do you

calculate whether to accept the new one or not okay. Accept the new particle, you take the

ratio, new potential energy/kT e to the –new potential energy/kT/e to the –V old/kT okay.

So if this ratio has a certain value, the next slide will tell you how to accept or reject with this

new move. So this is the slide now, so what I am going to do, this position i, I have moved it

to a new position.

(Refer Slide Time: 06:10)

When I have moved it to a new position, I have a new potential energy. So I took this delta V

is the difference in the potential energy. So now if delta V is>0, so that means okay. So look

at this graph, whenever the new potential energy is<the old potential energy, this ratio will

be>1 okay. This ratio will be>1, so I will accept that move. So whenever the new potential

energy is<the old potential energy that ratio e to the –delta V will be<1.

So whenever this ratio is<1, suppose it is at this point, obtain a new random number. When I

obtain a new random number, if that random number is<this red line, accept the move. If the

new random number is>this red line, reject the move. So what this means physically is that if

the new potential energy is very high compared to the old potential energy, then e to the –

delta V will be very small.

So very high energy configurations will be accepted with very low probability, very low

energy configurations will be accepted with high probability and whenever the new potential

energy is greater is less than the present one, then it is certainly accepted. So this is the

strategy. So energy configurations with very high energy are accepted with low probability,

configurations with low energy are accepted with high probability.

So what it means is that the distribution function we get is exactly like a Boltzmann

distribution. What is the meaning of a Boltzmann distribution? The Boltzmann distribution

says probability is proportional to e to the –beta*energy. So higher energy lower probability,

lower energy higher probability, so therefore this particular strategy of Metropolis allows us

to sample configuration based on a Maxwell-Boltzmann distribution.

So that is the meaning of this Metropolis Monte Carlo simulation okay.

(Refer Slide Time: 08:13)

So I have repeated the whole thing here. What are the selection criteria? I will list them again.

If the new energy is lower, more stable structure then accept the move. If the new energy is

higher that is less stable then generate a random number between 0 and 1, calculate Pij is=e to

the-Ej-Ei. Only accept the move if Pij is higher than the random number. If the random

number is<Pij, accept.

If the random number is>Pij, then do not accept. So this allows me as I mentioned earlier that

the whole distribution you get will sample all the important configurations corresponding a

Boltzmann distribution.

(Refer Slide Time: 08:57)

So this is my Monte Carlo simulation. Now let me summarize what I have done so far. I

started with systems and examples of molecular dynamics. I considered the potentials. I

considered the equations of motion. We discussed periodic boundary conditions. We need

periodic boundary conditions because I want to simulate an infinite system; I want to

simulate a liquid.

So you cannot simulate a liquid with 50 or 100 or 200 particles, it has to be much, much

larger because liquids typically Avogadro number of particles, so to have an infinite system I

use a periodic boundary condition. So it not only removes the edge effects, it allows me to

simulate real liquid. So minimum image convention, I only consider interaction of a central

particle with all the remaining n-1 particles with this particle at the center, so that is the

minimum image convention.

We considered in detail MD classical molecular dynamic simulations as well as Monte Carlo

simulations okay. We discussed trajectories and averages. We discussed spatial correlation

functions as well as time correlation functions, diffusion constant through mean square

displacements and what we will do? We will execute a program now of Monte Carlo as well

as molecular dynamics. So before I execute I will tell you what is now the strategy of that

program.

(Refer Slide Time: 10:18)

So that strategy of the program would be the structure is in the main program I read all the

parameters like coordinates, velocities, I read in the main program. Then, calculate, then call

a subroutine called dynama. Dynama is a dynamic subroutine. So what this subroutine does?

It calculates other subroutines. What are them? Forcal, calculate the force okay. Verlet is a

subroutine which gives me new positions and velocities okay.

Then, every few steps write the averages and every step try to write position and velocities,

so that will complete my one step. Once I complete to at one step, I update my t to t+delta t

okay. So this is done in the main program. Then, if this new time is much greater than the

maximum time, then stop. If it is less I go back and keep on calculating my new positions and

new velocities until you do from the starting time till the end time.

So starting time typically is 0 picosecond, ending time typically 50 or 100 nanoseconds. So

this is how we will do the simulation and at the end of the simulation write files so that I can

restart the calculation. So next slide illustrates what are all the subroutines here.

(Refer Slide Time: 11:35)

As I mentioned to you dynama, it controls the dynamics of the system and it calls you forcal.

Forcal is the force calculation. This subroutine is to calculate temperature and Verlet is to

calculate new positions and velocities. Forcal, it calculates the potential energy as well as the

force okay. Now acomcor, it checks the center of mass of the entire system. You know as you

keep on doing the simulation, the entire simulation box should not start moving to the right

and left.

So you make sure of that by correcting for the center of mass. Verlet calculates you Verlet

algorithm, so whenever a particle goes outside the box, you bring it back for the periodic

boundary condition. Avsd calculates you averages, paircf calculates pair correlation function,

this vmdwrite it writes the configuration for a VMD program, gauss is a subroutine to

calculate Gaussian random numbers okay.

This one is for normal random numbers. There is a function random number generative also.

(Refer Slide Time: 12:39)

Then, what about the files for data files, ncord or ncord0 contains all the initial positions as

well as certain parameters okay. So there are certain parameters to decide whether to start

from a fixed configuration or to start from a previous configuration. Argout, it gives you

several outputs. Bindat gives you a restart configuration. Grdat is for pair distribution

function. Positions are to calculate mean square displacement.

Velocities are for time correlation function and these other things are to check for errors in the

program okay.

(Refer Slide Time: 13:17)

So now let us see how to run this program. So the file data file is containing file ncoord. So

this ncoord has 3 data and the position. So first line will tell me whether I will restart from a

frozen configuration or restart from an old configuration. This is a restart option, so the next

one will be temperature, delta t, charge, box length, delta r for calculating GFR and the q1 is

an initial random number.

So these are all the variables, I will show you in the program. Then, finally it reads all the

coordinates and velocities. So what I will do now, I will actually shift to the program, execute

Monte Carlo as well as molecular dynamics and then conclude this part of my lecture. I am

now going to demonstrate execution of the molecular dynamics as well as the Monte Carlo

program. All my files are in this directory mcmd okay.

(Refer Slide Time: 14:22)

So let me just do ls, so when I do ls you get a list of all the files, you see how which are my

files okay.

(Refer Slide Time: 14:35)

Let me do ls-l okay. My argon.f is my molecular dynamics program, argonmc.f is my Monte

Carlo program. Then, msd.f calculates me mean square displacements and vacf.f calculates

me velocity autocorrelation function. So what I will do? I will illustrate first the molecular

dynamics program. So how do I do that?

(Refer Slide Time: 15:02)

I compile gfortran argon.f that is my molecular dynamics program. So it has compiled now.

So let me see all the data is in ncoord. So let me see vi ncoord okay. So this is data. The first

one is the restart option, I discussed in the earlier class and this 1 is to read the data. The next

I have this 10 tells me subaverages, how many subaverages I have. The next one is the

number of steps.

This is the number of particle 64 okay, 64 is the number of particles and 75 is how many

boxes I put my GFR. See I want to calculate GFR, there are 75 boxes that is 7.5 angstrom,

each bin for GFR is 0.1 angstrom. Then, temperature is 190 this is my temperature, 0.01

picosecond is my time step okay, then third one is a charge, our system has no charge, so I

put 0. Then, 14.564 is the box length, 0.1 is the spacing for GFR and 0.12345 is a random

number.

And then the next 64 lines since there are 64 particles there are 64 positions. These positions

are all lattice positions now okay. So now “Professor - student conversation starts” Can we

start from any random number? You can start with any random number. Main thing is you

should every time you should change a random number because if you keep the same random

number you will get the same sequence, so good programming wants to change it to some

other number. “Professor - student conversation ends.”

And we know that when you start with the given random number, to get the same random

number it takes a very, very long time okay. So the algorithm is such that the random

numbers will not repeat for at least several lakh steps. So even if you give the same random

number, it will not be too bad but it is not a good thing. Always change the random number

so that ultimately you want to have a different configuration.

Your Monte Carlo should have, it should span the whole space, always it should be different

okay. So now I will run that MD program now.

(Refer Slide Time: 17:30)

So a.out, so now it is saying, okay so I made a mistake, dot slash I did not give, dot slash. So

now it is doing all these calculations, it will do for 10,000 steps okay. So when it does 10,000

steps, it will stop my okay. So it has done the 10,000 steps. So I can see that, so this is my

output file. So what does this output file contain? My initial data whatever I fed in initial data

okay. Then, initial okay I am not able to see it okay.

The output file contains this argout, all the initial data I fed. This is from a cold start because

restart was 0 okay. Then, I calculate velocities from a random distribution okay at

temperature t. So this is my root mean square velocity from the Gaussian distribution. Then,

it writes all the initial velocities for a cold start, it writes the initial velocities okay. It writes

all the initial velocities, there are 64 of them.

Then, temperature, it lists all the forces, it lists all the forces on each of the atom okay. Then,

it calculates the temperature in every subaverage okay, every 10 steps it is calculating the

temperature. So it is listing the temperature for the entire simulation. There will be 10,000

steps. So I am going to write every 10 steps. So it will write 1000 times. “Professor - student

conversation starts” Here we are not giving anything to keep the temperature constant?

No, there is a rescaling, we rescale temperature every few steps that is already there okay.

“Professor - student conversation ends.” So we rescale every step, every few steps. So now

these are my averages, during the simulation these are the final averages over the entire

sample.

(Refer Slide Time: 19:40)

So you can go to the program, you will see that the first one will be the average potential

energy okay. Second one will be the temperature. Third one will be kinetic energy. So all the

averages are calculated during the simulation and finally this is my final configuration, final

forces okay. These are my final forces, then final positions okay, then final velocities okay. So

and this is random number.

So now I come out of this okay. So if I want to restart from this configuration, I change my

ncoord. So okay that is I have made a wrong statement. I will come out, vi ncoord, so what I

do here, I change the first 0 to 1, you are not able to see that okay. I change let me show that.

(Refer Slide Time: 20:48)

So the first one was 0 for a cold start, now I will replace it with 1 okay. So I have replaced

that, now I will run a.out again, dot slash, so this time when I run it is running from the last

configuration of the last simulation. When I did 10,000 steps, so remember in Verlet, I need

present step and the old step correct. So what it is writing in that file bindat, it will write the

old position, current position and the current velocity.

So for a restart, I use bindat file which has current position, past position and velocity, so then

I can do Verlet know. For Verlet I need V new=two times V current-V old, so that is the MD

run. Now I want to calculate velocity out of correlation function. So what I will do?

(Refer Slide Time: 22:07)

Let me compile that program, gfortran vacf.f, so I compiled the velocity autocorrelation

program. Now I do dot slash a.out, so this program uses all the velocities, look at this line,

see it writes all the velocities can you see this velocities here. That velocities has all the

velocities for 10,000 steps. Positions will have all the positions for 10,000 steps. So I can

execute. Now it has already completed.

(Refer Slide Time: 22:46)

So let us see, so I did vacf, so vacf.out will have the output for the velocity autocorrelation

function, so let me edit that vi vacf.out. So these are all that my velocity autocorrelation

function (()) (23:02) 0.1 this is the value, 0.3 this is value. So as the time increases to around

0.39, it has taken a negative value. Remember, we had shown a plot of autocorrelation

function, it starts with 1 goes to a negative value, comes up again and finally goes to 0.

So this is my velocity autocorrelation function program, so finally see it has gone to 0 at

about 2 picoseconds. It has gone to 0 and it also calculates a diffusion constant using that

relation integral, this is the diffusion constant. So now I can also do mean square

displacement.

(Refer Slide Time: 23:41)

How do I do that? gfortran, so I am compiling the mean square displacement program, so it

will calculate mean square displacement as a function of time. So just as in the earlier case, I

had a plot of velocity autocorrelation versus time. Now I will have a mean square

displacement versus time. Once this program is over, I will tell you how it calculates the

mean square displacement okay.

So what was that file now? msd.out, you see that msd.out. So I read that file vi msd.out so at

each time step it is calculating the mean square displacement. So if I plot this mean square

displacement versus time, I can take the slope and calculate the diffusion constant. So

remember that the mean square displacement become 6dt at large times. So this is how you

can calculate the mean square displacement by plotting this mean square displacement versus

time.

And I would also urge you to look at a software called xmgrace. Xmgrace allows you to take

a file from your data and plot on your screen. Otherwise, you will have to take the Scilab, you

can plot in Scilab know. You can take all this is Scilab and plot or you can plot using xmgrace

software.

(Refer Slide Time: 25:20)

So the last program I will illustrate now is Monte Carlo program, so for that I will do I will

compile the Monte Carlo program, gfortran I am compiling the Monte Carlo program okay.

So I have compiled the Monte Carlo program, so in the Monte Carlo program there is no

time. So what we do, see there is no time. So in my old program this 0.01 was delta t, so now

this delta t is the displacement in Monte Carlo so what I will do?

(Refer Slide Time: 26:10)

I will change it to instead of 0.01 I want 0.1 okay. How do I delete that? So I have made 0.1,

so I have made, so I have added escape, so I have added 0.1 as the maximum displacement in

each step, 0.1 angstrom. So no particle will move more than 0.1 angstrom, so I will escape.

Did I compile the Monte Carlo? Now let us see again. So it is alright. So I escape, argon and

c I have compiled, now let me execute dot slash a.out.

(Refer Slide Time: 27:15)

So now it is doing this Monte Carlo calculation for 10,000 steps. So this will take a very long

time. So should we do it for smaller steps, so that we can demonstrate quickly? “Professor -

student conversation starts.” Yes, sir. “Professor - student conversation ends.” So I can

stop it by doing control z, this has stopped. So what I will do instead of 10,000 steps, I will

just do for 100 steps okay.

(Refer Slide Time: 27:57)

So this is mainly to illustrate, so since it is going to do 100 steps, it will be over very quickly.

So what we are doing here? We are executing the Monte Carlo program not the molecular

dynamics okay. So this will be over very shortly. So it will be 100*10, so 1000 steps and in

Monte Carlo simulation it will not calculate for you any velocities, it will only calculate new

positions, no forces are calculated because nothing moves.

Because of a force it is just a random movement, so at the end of this you will see that argout

will have an output file which has only the final configuration. The velocities have no

meaning okay. So what I urge you now since we have used these different programs, look

through the program and check all the names of subroutines. So check all the names of

subroutines.

So the name will tell you, forcal will calculate forces, Verlet will calculate positions, MC will

calculate MC steps using random numbers, so that allows you and look at all the read and

write statements, what files are written to, what files are read from and once you know this

you will get a good feel for all these programs okay. So it should stop at 100, so I will just

edit okay. So I wrote a wrong thing.

(Refer Slide Time: 29:20)

So this is the output of the Monte Carlo. So you see that 0.1 was the spacing that 0.1 is given

here, this is my initial cold start okay. “Professor - student conversation starts.” Because

when I do Monte Carlo, see what I have done I have used the old program only, I have not

changed anything. Instead of a forcal, I have a MC, all the rest. So what I will do I will

change all the unnecessary things and just make it a Monte Carlo program. “Professor -

student conversation ends.”

See you will see that whenever you write a new program, you want to start from an old one

correct, it is like when you move to a new room from an old room you carry all the old things

from the old room. So this program is the MD program where the force is removed, in place

of forces I calculate Monte Carlo maths okay. So in assignments we will give you many,

many exercises where you can run this program for other situations.

Now what do you think you will do suppose you want to instead of argon you want to do

krypton what will you do? “Professor - student conversation starts.” We have to change the

temperature. No, I want to do at the same temperature, how will you do? Change the

coordinates. But you have to change the parameters know. If argon has sigma of 3.4 krypton

will have a parameter of 4.0.

So if you change the Lennard-Jones parameter, you will get the krypton okay. So you can do

for many, many systems now. “Professor - student conversation ends.” So what I will urge

you, you look at all the subroutines, look at all the read and write files and execute it for

different situations okay. So from next time onwards, we will use a Gromacs program which

is far more elaborate but through this MD program you will know what each step in your MD

means okay.

It is always good to know every step in a program. A good programmer knows every line in

his program whereas an average programmer take someone else program and runs it okay. So

hope you will enjoy and we will continue with Gromacs simulations in the next lecture.

Thank you.

