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Hello and welcome to this continuation lecture. In the last lecture we considered the details of

the MD simulation in particular the Verlet algorithm and other details, details of the forces

and how to calculate the new step in terms of the old step and one of the points that we

considered was if there is a molecule like water or CH3 CL or CCL4. As these molecules

move the bond lengths and bond angle should not change.

So for this purpose a method called SHAKE is used. SHAKE is a constraint method that is

what I have given on this slide okay.

(Refer Slide Time: 00:54)

So for this particular MD simulation the OH bond angle changes or the OH length changes

are not important, so we are only interested in the molecule moving as a whole not in much

shorter range motions. So in that case we want to keep the bond lengths and bond angles

constant as if the molecule is moving as a rigid body okay. So that is what we will discuss

now and we also commented on the methods of statistical mechanics.

This  you  will  see  in  another  course  on  statistical  mechanics.  So  once  you  have  lot  of

constraints that is indicated here, have this molecule water HOH.



(Refer Slide Time: 01:35)

As the molecule moves around I do not want to change the OH bond length nor do I want to

change the HOH bond angle. So instead of calling a bond angle as a separate constraint I

want to say that one, the distance between oxygen and hydrogen is fixed, between second

oxygen and hydrogen is fixed and also the HH length is fixed. So if the 3 lengths are fixed

automatically the bond length is fixed.

So for this purpose we use a constraint method so the rate of change of the first coordinate is

given by the forces on the first coordinate plus the constraint on the first atom. Similarly,

there is a constraint on the second atom, g2, constraint on the third atom g3, now what are

these constraints, these constrains are given here. So the distance between 1 and 2 is r1 2

square – d1 2 square, d1 2 square is the bond length okay.

So this bond length has to be fixed, distance between 1 and 3 is the second bond length that

should be fixed and similarly the bond length between 3 and 1 has to be fixed. So these are

the constraint equations. So how do I get the constraint. So we use a Lagrange equation of

motion and these are the Lagrange multipliers. So the constraint is given in terms of some

constant and the gradient of the potential.

So this gradient of this particular constraint gives me a potential, so there is a constraint to

give me an overall force. So there is a force on each atom due to all the constraints on that

atom. So in particular, so this is ga, constraint on ga is gradient with respect to ra of x12 and



also gradient with respect to ra of x23, both constraints have to be used. So this is a rather

complicated problem.

So what is done the whole thing is linearized okay, so this is a method of linearization. So

you need to  basically  find  lambda  12 and lambda  23.  So you rewrite  the  equations  for

constraint and the new positions now, the new r12 and the new r23 okay that should be the

unconstraint move plus the constraints. So the unconstraint move would be due to the forces

themselves directly.

And the constraints will correct for them. So constraint will correct for them so this lambda

12 and lambda 23 are obtained iteratively so that the bond length is fixed. So the new bond

length r12 after the move will be identical to the old bond length, okay. So the theory you can

study later. So we just want to mention that you use SHAKE constraints or some other types

of constraints so that the bond length and bond angles are fixed okay.

(Refer Slide Time: 04:27)

So  next  we  want  to  study  thermodynamic  properties,  so  what  are  the  thermodynamic

properties you want to study, one would be the kinetic energy, so kinetic energy is nothing but

the sum of i going from 1 to N, mi, vi square so that should be = 3/2 kT by the equipartition

theorem. So it allows me to calculate the temperature from calculation of the kinetic energy.

So temperature is really obtained by kinetic energy * 2/ 3 NKB.

So this is how I calculate the temperature for every step in my simulation. Similarly, how do I

calculate the internal energy, so remember all my particles are interacting with one another.



So if I calculate the total interaction energy between all the particles this is i and j summed

over all the particles, calculate the average interaction energy over the entire trajectory then it

gives me what is called the configuration energy or it is nothing but the internal energy, okay.

So internal energy is an average of all the interactive forces. For an ideal gas this internal

energy is 0, okay, so this is really your thermodynamic energy.

(Refer Slide Time: 05:35)

Then I can also calculate pressure through my simulation. So this is an equation, this is a

virial equation for pressure. If there was no interaction fij is the force between molecule ion

molecule j, rij is the distance between i and j. So this is called a virial. So this is a standard

statistical mechanical formula. So if there were no forces again PV = NKT, if there would be

no forces.

But  when the forces act  it  corrects  for the ideal  gas equation of state  through this  virial

corrections. So this is an equation for pressure and since in each step we are calculating rij

between particles, fij between particles, so this dot product can be calculated at every step.

You get the average of this quantity so at the end of the simulation I get pressure in terms of

this quantity.

So  evaluating  pressure,  thermodynamic  pressure  is  very  easy  in  an  MD  simulation.  So

similarly now suppose I want to get the heat capacity. So heat capacity is given in terms of

this formula. So delta Uc square is the average of c square – average of Uc whole square. So

this is a fluctuation in energy. Fluctuation in energy is obtained by average of the square of



energy – square of the average of energy. So that fluctuation is given by 3/2 Nk square T

square * 1-3 NKB/Cv, so Cv is my heat capacity at constant volume.

So  this  is  how  you  calculate  heat  capacity  in  my  calculations.  So  in  addition  to  my

trajectories which are positions and momenta as a function of time, there is now a formula to

calculate pressure as well as heat capacity.

(Refer Slide Time: 07:23)

So then now we come to the probably the most important term in this entire simulation which

is called the radial distribution function. So we will spend some time in understanding what

this radial distribution function is. So this radial distribution function at a given distance are is

the local density at the distance; local density, how do you get the local density, find the

density at that distance and divided by 4 pi square dr, which is the volume at that distance r.

So the next slide will explain this in greater detail. So I get the local density given by this

term, divided by the bulk density that is my pair distribution function. So the same thing can

be obtained in terms of counting all the ij pairs, rij is the distance and this delta rij = 1, if r =

rij and it is = 0 if r is not equal to rij. So you count all the pair distances through this delta

function, Kronecker delta function.

Then multiply by v divide by n square. So when you execute this formula you will also get

the  pair  distribution  function.  So  now  this  pair  distribution  function  really  tells  you

probability of finding the second particle at a distance r if one particle is located the origin.



So this is pair because there is one particle at the origin and one particle at r. So what is the

probability of finding these 2 molecules at this distance r.

So that is what the pair correlation function or the radius distribution function tells us. So

now what is the use of this distribution function. So when you take a sin transform of that

pair correlation function what you get is a structure factor. This S of k is the structure factor

and structure factor can be directly obtained from experimental x-ray diffraction data. So this

pair correlation function is very important because you can directly relate the transform of

this correlation function.

This is like a Fourier transform to the structure factor, which can be measured experimentally.

So this is the connection between your microscopic pair correlation function with a structure

factor. So let us now analyze how to calculate this pair correlation function again.

(Refer Slide Time: 09:40)

So this slide really explains what is the meaning of this pair correlation function. Imagine this

white circle which is located at the center and all the other molecules are distributed around

the central molecule. Now what I want to do is to calculate a local density at this distance R

then divide by the global density. So what is the local density at this distance R. So at this

distance R, I construct a shell, this is a spherical shell.

So in 2 dimensional it looks like 2 circles, but this is a spherical shell and what is the volume

of that spherical shell, volume would be area multiplied by this delta R. So what is the area of

this sphere 4 pi R square. So 4 pi R square is the area of this sphere, to that I multiply by this



delta R, so that gives me the volume of this shell. So that is the volume of the shell, 4 pi R

square * delta R is the volume of that shell.

Now what I want to do, I want to count how many particles are there in this particular shell.

How will  I  count?  Let  us say I  have the central  particle,  I  have another  particle.  If  this

distance between these 2 particles is between R and R+ delta R then this will be in that shell.

So all the molecules whose distances are between R and R+ delta R will be in this particular

shell. So once I count that number let me call that number as nR.

So what is nR? nR is the number of molecules in this spherical shell. What is the shell? The

space between an inner area and an outer area. So since this NR is the number of particles in

that shell, if I divide that by that volume, so I get a local density. So that will be the density in

that shell. So that density divided by bulk density is called the pair distribution function. So

this pair distribution function will allow you to calculate many quantities.

(Refer Slide Time: 11:46)

So in the next slide I will illustrate the same calculation once again, so this is a 2 dimensional

area. So in that area what I have done, I have taken a central particle here. The red particle is

the central particle. So at several distances from the central particle I construct these shells.

Now in 2 dimensions the shall is nothing but that area. So what will be the area. Area will be

pi R square dr will be that area now.

So for the inner shell it will be pi R square dr, for the outer shell it will be pi R square, this R

is bigger than the inner R, so in a 2 dimension, so instead of a volume I have an area. So how



do I calculate the local density? Number of particles in that area divided by the volume in 2

dimension which is that area now okay. So density at R divided by bulk density. So it would

be very easy to calculate now.

So let us first calculate the bulk density. So what is the bulk density in 2 dimensions? Number

of  particles  in  this  entire  box divided by the  area.  So  area  is  8  angstroms  *  9  and 1/2

angstroms so that is 154 that is 76. So 76 angstrom square is the area of this box and now

what I want to do, how do I get the bulk density? Total number of particles, so there are 154

particles in that area divided by that area so this is my bulk density.

Bulk density is the total density, the total number divided by total area. Now how do I get a

local density at r, so the first one is at 1 angstrom, the first one is at 1 angstrom, second one is

the 2 angstrom, third one is at 3.3 angstrom okay. So I have calculated 3 particular areas now,

3 particular distances. So in the first area that is the inner red circle, you will see that in the

inner red circle there is hardly any particle in the inner red circle because some particle has to

be inside that area.

Only if the center is inside the area I will count it inside. So this is my second area, third area,

so what you have to do, count the number 1 in the first area, number 2 in the second area,

number 3 in the third area and divide. So that number divided by the area will give you the

local density. So you can calculate actually for this example here. Calculate the locate density

and divide by your bulk density.

Bulk density is 154/76, so that is your pair distribution function. So your bulk density is

already calculated here. You will see that it is 2.026 angstrom to the -2. So this is the first one.

So calculate all the local densities divided by the bulk density you will get a gfr. So now one

point I want to make is that if you are very close to this center, you will see that no other

particle will be located at this center. 

So therefore you expect the local density to be 0 as r becomes smaller and smaller because

when r becomes less than the size of the particle you cannot expect any other particle to be

inside that first particle. So therefore this local density will be 0 for a number of points near

the origin, then it will have oscillations.

(Refer Slide Time: 15:16)



So one example will be shown here, so this is how that radial distribution function will look

like. When you start near the origin, the local density is 0 because there is no other particle

immediately near the center or = 0. So now when you go to some distance that local density

will become a maximum. Why does it become a maximum? Go back, you will see that in

some particular circle there will be many neighbours in that circle.

So  when  there  is  a  first  coordination  shell  there  will  be  a  maximum  in  gfr,  second

coordination shell there will be another maximum. So that is what this graph says. So around

the first particle whenever the first shell is completely formed I have a maximum. So second

shell I have another maximum, third shell I have another maximum. So between the first shell

and the second shell as I am trying to move out there comes a point where this density is less

that the bulk density okay.

There will be a region between the first peak and the second peak where the local density will

be very small because immediately after the first neighbours there will be some gap till you

find the second neighbour around a particle. So that is why this minimum is there. So this is

my gfr.

(Refer Slide Time: 16:29)



So the same thing now is explained here. This is a gfr for several systems okay. Now if it is a

solid you will see that around a solid there are particles at some points and no particle at some

points. So gfr for a solid will be oscillatory like this, whereas for a liquid gfr is continuous

because these molecules keep on moving all the time. Molecules keep on moving all the time

so there will be no place where there is no molecule.

So therefore for a liquid the gfr is a continuous function, whereas for a solid it is a discrete

function like this. So now the other physical meaning of the gfr is that gfr can be written as

exponential of –Wr/kT, so this Wr is really the work done to bring a particle up to distance r

okay. So this is called a potential of mean force so you will have more of this in your later

GROMACS calculations as well.

So what is the physical meaning of gfr? So if I take exponential of –Wr/kT which is gfr. See

this Wr tells me the work done to bring the particle from infinity to some given distance. So

that is what this shows, it is a work term, work done to bring a particle from infinity to the

distance r, so that is my meaning of Wr, which is related to gfr. So remember this in the future

calculations.

(Refer Slide Time: 17:59)



So  this  slide  is  a  representative  slide  which  tells  you  how  this  gfr  is  related  to  many

properties. Lots of theory is there behind this. You do not have to bother too much. All I am

saying is that if you know gfr, you know the structure factor, I have already mentioned gfr

can be given as a Fourier transform of the structure factor. So if  you know gfr you can

calculate the osmotic coefficient.

You can calculate the excess energy. You can calculate the excess volume and in certain cases

using gfr  you can also calculate  rate  constants.  So this  gfr  is  a very crucial  part  in  MD

simulations what you have done, you have started with a potential energy function. You have

done the averaging and obtain this gfr then all these properties can be calculated.

(Refer Slide Time: 18:45)



So next  we want  to  go to  a  second physical  quantity  which  is  called  a  time  correlation

function.  So what is the physical meaning of time correlation function. Suppose I have a

function which depends on time. So this f now is the function which depends on time. So f at

a given time t will be different from f at a later time t okay. So this is f of tau, value of the

function at time t = tau.

This value is the function at a value of t + tau. So between this value and the second value

there is always a gap of t. So I multiply the product and then divide by integrate from 0 to

infinity for all values of tau. So what I get is called a time correlation function.  So time

correlation function basically tells me what are the fluctuations in time. So gfr told me what

are the fluctuations in space.

Time correlation function tells me what are the fluctuations in time as time becomes very

large you expect that the correlation become smaller and smaller, okay. Now what is the

advantages of these time correlation function? One value is given here, so this is called a

velocity autocorrelation function. If you know the velocity autocorrelation function you can

integrate the time correlation function for velocity with respect to time and get the diffusion

constant.

And the same diffusion constant  can also be obtained from what are called mean square

displacements.  So I will have a slide now to explain the meaning of the time correlation

function okay.

(Refer Slide Time: 20:26)



But  before  I  do  that  so  what  I  will  show  you,  I  will  show  how  these  mean  square

displacement change with time, this is given here, so mean square displacement is the value

of position at a later time minus the value at an earlier time square that and average. So that is

the mean square displacement. The meaning of mean square displacement is position at time

0 okay. This is the initial position. 

Take the position at time t, take the difference between the two and square it and average over

all particles. So that is the mean square displacement. You will see that in a solid the position

of the particle is not going to change at all okay. So since the position does not change at all.

The mean square displacement almost is constant, because there is hardly some fluctuations

will be there around the mean position.

So at the most there will be some fluctuations which will remain constant whereas for liquids

the particles keep on moving further and further away from the initial position. So therefore

in liquid the mean square displacement varies linearly with time okay. So this is an important

property of all liquids where there is a lot of uniform and random motion. So whenever you

have a random motion the mean square displacement always is linear with respect to time.

(Refer Slide Time: 21:47)

So now since we talked of velocity autocorrelation function let me also show you a picture

how it looks like. The velocity autocorrelation function looks like this. I will take the velocity

at time 0 multiply by velocity at time t, average over all particles, then that product which is

average is plotted as a function of time. So you will see that when this time t = 0, so it will be

v0 square.



So v0 square average will have some value and as time goes on increasing the new velocity

will have less and less connection with the initial velocity. Imaging for example a particle

starts moving in the x axis, after some time it will not move only along the x axis, but it will

change direction and move to y, move to z, finally the motion will be completely random. So

at very large time the velocity at  large times will  have no connection or correlation with

velocity at 0 time.

So that is why these correlation function go to 0. So 0 means no correlation,  large value

means very large correlation, negative value means negative correlation that is initially the

particle starts moving say in one direction then the molecules in that direction will oppose

that movement. Once the molecules in that direction oppose the movement the particle will

come back. 

So therefore velocity at time t will be negative compared to velocity at time 0 that is why the

velocity autocorrelation function takes a negative value.

(Refer Slide Time: 23:17)

So this slide really tells you what is the meaning of that autocorrelation function. So all these

formula  have  a  particular  meaning,  but  let  us  understand  what  is  the  meaning  of  this

autocorrelation function. What I have plotted I took a molecular dynamics trajectory so 3

particle trajectory, and I have written here Vx, Vy, Vz of particle 1, Vx, Vy, Vz of particle 2,

Vx, Vy, Vz of particle 3 and I am listing them as a function of time.



So what is the meaning of correlation function at delta t, if delta t is, so this is 1 delta t, this is

2 delta t. So if I want to know how a function at one time is correlated to function at the

second time. So how do I find that correlation. Take the first value, multiply by the second

value. So this is correlation at delta t = 1 delta t, take at 2 delta t, multiply by 3 delta t, take

the product, so take first this product then second product, third product.

Each one of these pair products and divide by the number of products you have taken. So that

is my pair correlation function at delta t. Now if I want pair correlation function at 2 delta t,

take the value at here and take the third value, 1*3, 2*4, 3*5, 4*6. So whenever you take pair

separated by 2 steps that is my autocorrelation function at 2 delta t. Now if I want correlation

function at 3 delta t take the first value and multiply by the fourth value.

So this is my first point when I take the second value take second and fifth, then third and

sixth, fourth and seventh. So take all products which are separated by 3 delta t. So that will be

correlation function at 3 delta t. So if you want at 5 delta t, then first value and sixth value,

second value and seventh value. So take all the pairs of products which are separated by the

same difference in time. 

So that is what this formula means, take some tau, now tau is the separation. So you take the

products all separated by tau and sum over all values of mu and as well as all values of the

particle.  So  I  sum over  all  these  particles,  so  that  is  how I  will  get  the  autocorrelation

function, okay. So then you list all those points. So find tau is 0 at 0 it is just square of the

original value.

What is the value at 0? All the value squared okay, that is my initial value then at each delta t

I take products as I describe to get the autocorrelation function and it is picture you already

know how it looks like okay.

(Refer Slide Time: 26:03)



So this is some example of a molecular dynamics we have taken fullerols here and calculate

the pair distribution of fullerols and I told you earlier that pair distribution function can be

written as e to the –Wr, so these really give you the pair correlation function between several

fullerol molecules. This is just to given an illustration.

(Refer Slide Time: 26:27)

Now some references for this, references are Computer Simulation of Liquids by Allen and

Tildesley, it is a very nice book, if you want more theory you can do Hansen and McDonald,

there  is  a  Theory  of  Simple  Liquids  since  we are  discussing  lot  of  equations  of  motion

Classical Mechanics by Goldstein is a fairly good book and we have NPTEL Courses on

Statistical Mechanics as well as Computational chemistry okay.



So you may also refer to that NPTEL Courses on Computational chemistry which will have

lots of details of all the things we have said here okay.

(Refer Slide Time: 27:01)

So what I want to do next time is to consider Monte Carlo simulations and an application of

this MD program. So I will conclude here and next class I will exactly start with this Monte

Carlo  slide  tell  you  how  Monte  Carlo  simulations  differ  from  molecular  dynamics  and

illustrate it with an execution of a program. I will conclude here. Thank you.


