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Let  us  continue  our  discussion that  we started  in  the  last  lecture.  In  the  last  lecture  we

discussed several  aspects  of  molecular  dynamics  and we ended the last  lecture  with this

particular slide which talks of the equations of motion.

(Refer Slide Time: 00:31)

So the top line shows the Newton’s equations of motion and this force is nothing but gradient

of the potential. What is the meaning of the gradient? You plot the potential along a distance

and take the slope along that  direction,  so that  is  my force.  Force is  the gradient  of the

potential and this is the formula for the force and to find this formula for the force you need

that model for the potential.

In this case the model for potential was the Lennard-Jones potential. So this would be the

force between any 2 particles i and j. So now suppose we consider the whole system.

(Refer Slide Time: 01:06)



So next slide this shows my system. So my original system consist of only 4 particles, it

could be 4, it could be 4000, but each of this box is surrounded by similar boxes on all sides.

Now why do I surround this box on all sides by similar boxes, because if I continue this

repetition in all  directions  so I  have an infinite  system. So an infinite  system will  really

behave like a liquid, not like just a box.

So that is what is the meaning of periodic boundary conditions.  The meaning of periodic

boundary condition is that whatever happens in this central box is repeated in all other boxes.

See for example suppose this molecule here moves into this box. So if this molecule moves in

this box, this molecule move in the box to the next side, okay. So if one molecule moves to

the box to the right, another molecule will move to the box to the original box.

So what periodic boundary conditions guarantee is that the density of my system will not

change.  So periodic  boundary  condition  ensures  that  the  density  will  not  change  and in

addition to that what we do is called a minimum image convention. So before I go to this

minimum image convention. So let us understand this properly again. Each box is surrounded

on all sides by boxes of a similar type.

So in 2 dimensions it will be surrounded by 8 boxes. What are those 8 boxes? 1, 2, 3, 4, 5, 6,

7, 8. So in 2 dimension each box is surrounded by 8 boxes, in 3 dimensions the central box

will be surrounded by 26 boxes, make sure you get this right because not only there will be

these 8, there will be 9 boxes behind the screen and there will be 9 boxes in front of the

screen. So 9 + 9 that is 18 + these 8 so there will be 26 boxes surrounding the central box.



(Refer Slide Time: 03:16)

So that is my periodic boundary condition and the advantage of periodic boundary condition

is that each particle in my periodic system will interact with all the particles around itself

okay. So this is called a minimum image convention. So what is the meaning of a minimum

image convention. Each particle interacts with all it is neighbours in such a way that this box,

this particle is treated as a center of the box.

So for example if this molecule is the end of this box it will not interact with molecule j in the

same box, it will interact with molecule j prime because that j prime is closer to i than j. So

that  is  the meaning of minimum image convention.  Minimum image means around each

particle I construct a box of the same size as the original box and the particle will interact

with all the particles in that box with this particle as the center.

So when you, what it means for particle i in this case I will use rij prime and not rij okay. So

when I do a computer program how will I know whether I should calculate j prime or j. So

this is an algorithm for that okay. This is an algorithm, so that algorithm says xij that is the

distance between i and j will be actual xij okay. So this is the original xij - box length times

Nint xij/L xij is this distance and L is the box length.

So when I divide xij/L, so I get an integer, so if I take the integer part of that and multiply by

L I will get the real xij. So what is Nint a, nearest integer to a. So nearest integer to a. For

example, this if xij is more than the half box length. Suppose xij is 0.7 times L so then the



integer is 1. So if this xij is 0.7 times L so I will not take the original xij, but I will subtract

that L because now it has become 1. So I will take xij prime.

So this ensures that I interact with only those particle which are within the half box length

about this particle okay. So the same thing is illustrated here okay. I have a particle in this box

so this will not interact with any particle outside that cut, cut means L/2 is a cut off length.

All molecules whose length is more than L/2 are not considered at all, okay. So that is the

meaning of saying that each molecule is treated as the center of the box in which it is located.

So each molecule behaves as if it is in the center of that box. So and the great advantage is

that  the  boundary  effects  are  taken care.  So  you know suppose  I  did  not  have  periodic

boundary conditions. If I did not have periodic boundary condition this particle will interact

only with these particles and this will behave as if it is in the edge of the box whereas if I

have periodic boundary condition, there is no edge any more.

Each particle is surrounded by a similar box around itself. So the edge effects are gone. So it

is a very standard practise to do molecular dynamics with periodic boundary conditions and

minimum image convention, the only problem would be if there are coulombic interactions

this  situation  is  not  adequate,  because  in  a  coulombic  situation  there  are  long  range

interactions. So therefore I have to consider things like Ewald sum or reaction filed.

I have already mentioned this in my last class and when you do GROMAC simulations you

will have more occasion to use these particular ways of doing things.
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So now let  us do this  integration algorithms,  what  is  an integration  algorithms,  I  have a

position r and in the next, suppose I have a time step, in all our simulations delta t will be the

time step. So after this time delta t where will the particle be located. So to find that out, the

particle will be acted upon by velocity as well as the acceleration. So the new position will be

velocity * delta t.

So this is by the velocity term okay, and this is due to the acceleration term, okay, this is the

acceleration  term.  So  the  net  displacement  would  be  a  sum  of  velocity  term  and  the

acceleration term. So the new position will be r at t + delta t. So that is how I have to do my

simulations. I have original position r, original position t, original force f of t at this particular

position. So when I calculate the new position okay.

I have calculated the new position by adding these 2 components to the movement. So that is

my new position. Now how do I determine velocity? So that is the question now. How do I

determine  velocity, that  is  the challenge  then once I  have  the  new position,  in  that  new

position there will be new force, so what will be the new force at this point? I need the new

velocity which is already given here.

I have to calculate the new force then I will have the new position from this. So if I keep on

going from one position to the next, next position to the other one, so that constitutes the

trajectory. Trajectory means all the positions in a sequence that is my trajectory okay.
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So as I mentioned how to calculate velocity so that is the slightly tricky. So one of the oldest

and the most used algorithm is called the Verlet algorithm. So let me describe here the steps

of a Verlet  algorithm. So what is  done in Verlet  algorithm, I do a Taylor expansion, this

should be of not or, Taylor expansion of r at t + delta t in terms of rt. So I want to do a Taylor

expansion new position in terms of old position.

So how do I do the Taylor expansion r at new position will be r at the current position + r.t,

this should be r.t, I do not know whether that dot is available okay. So this should be okay, so

this should be new position + velocity times delta t + acceleration times delta t square + third

derivative, third derivate * delta t cube and so on. So remember that this is the velocity, not r,

this is acceleration, okay.

So this is r at t + delta t. At t – delta t it will be rt – velocity * delta t + acceleration * delta t

square – third derivative of r * delta t cubed and so on. So this is the new position. This is the

old position. If I add the two, what I get is r at t + delta t + r at t – delta t is 2 rt + this should

be force * delta t square. This should be r double dot t * delta t square + order t fourth or the

new position is given by 2 times the old position – the one position before the old position t –

delta t + force * delta t square.

So remember this r, it should be r double dot t, so that is force * delta t square/m okay. So that

is the acceleration * + a correction of the fourth order. So this particular algorithm so this is

our main result here, the new position is given in terms of 2 times the current position - the



old position + acceleration * delta t square okay, + a correction term. So now just I got the

new position, I can also get velocity now.

How do I get velocity, I  subtract 2 from 1, when I  subtract new position – the previous

position will be 2 times this should be again velocity * delta t + correction so the velocity

now will be r at t + delta t – r at t – delta t/2 delta t. It is really like a change in position in 2

steps divided by the time for 2 steps so that is my velocity. So only problem of this is that I

can get the new position in terms of the old position.

But I  cannot get the new velocity, what I  got really is  the current velocity. Because this

velocity is now at the current position and not the new position. So that is the problem, but

when we need only forces  suppose I  need forces,  in  terms of  that  force I  have the new

position if I do not need velocity for any specific purpose this is an okay algorithm. Now

there is also a refined algorithm for this it is called the velocity Verlet algorithm.

I urge you to look it up in the websites, so that is more symmetric with respect to position of

velocities.  This  is  not  symmetric  between  positional  velocities  because  new  position  is

predicted in terms of old positions okay whereas there is no formula for new velocity. So that

is the lacuna here, but it does not matter because many times we just want new position as a

function of time.

I also get new velocity when I reach a new position. For the new velocity I can always get

after I have gone to the new position. I can get this in the next step. So in principle I have

velocities at each step and positions at each step okay.
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So now just as I described the Verlet algorithm there is another algorithm called the predictor-

corrector so this is a slightly improved algorithm okay, so there are many algorithm there. So

I will just discuss 2 so that you know that there is no unique algorithm here and what was

good thing about Verlet algorithm the corrections to positions, look at here. The corrections

position to position is the fourth order.

So if your delta t was 0.1, delta t to the 4 will be 0.0001. So the corrections are to the fourth

order. There is no correction to the third order. Whereas for velocity there is correction to the

second order. So now coming to the predictor-corrector. I have initial position, initial velocity,

I calculate the initial acceleration. How do I calculate the initial acceleration? calculate the

force, divided by mass that is my initial acceleration.

So once I know the initial acceleration I can predict new position and new velocity using a

Taylor series okay. Here there are no correction in the slide in the previous slide I did not

write velocity in the acceleration properly this is better here. Predicted position at t + delta t

current positon + velocity * delta t + acceleration/t * delta t square. So this is my predicted

position. This is my predicted velocity at t + delta t is the new velocity, current velocity +

acceleration * delta t.

What is the predicted acceleration, present acceleration + third derivative * delta t. So to get

the new acceleration I need the third derivative of position with respect to time. So velocity is

the first derivative, acceleration is the second derivative, the third derivative of r normally we



do not use it so we do not come across. So here to know the new acceleration I need the third

derivative of r with respect to t. So these are my predicted position.

(Refer Slide Time: 14:31)

How do I correct them? to correct them I calculate a correction. So corrected acceleration is

force at the new predicted position/mass okay, this is my correction. So what is the change in

the acceleration now. Corrected acceleration - the predicted acceleration okay. So this is my

correction. So how do I correct positions now. The corrected position is predicted position + a

constant times delta t square/2 * correction in acceleration.

Corrected velocity will be predicted velocity + a constant times delta t * some correction in

acceleration.  So  these  constants  will  now determine  the  accuracy.  So  there  are  ways  to

determine these constants so one can do the predicted corrected algorithm okay.
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So now so  far  we have  told  you  how to  do  the  dynamics,  but  when  I  am starting  my

simulation that is initial  step how will I know the velocities okay. So I do not know my

velocities  when I  start  my simulations.  So  one  way to  get  those  velocities  is  through a

Maxwell-Boltzmann distribution. So remember we studied our random numbers one of the

greatest application of random numbers is to calculate these velocities.

How do I  determine  these  velocities?  you know that  they  are  distributed  according to  a

Maxwell-Boltzmann distribution. So I determine the velocities in this manner using Gaussian

random numbers  and once  I  obtain  these velocities  I  determine  the temperature  to  those

velocities. How do I determine the temperature? you know that when I take the average of

kinetic energy.

So the average kinetic energy is nothing but 3/2 kT, so that is the equipartition theorem. So I

determine a set of velocities. I determine the average kinetic energy and equate it to 3/2 kT.

So if the average kinetic energy is not equal to 3/2 if it is less I increase all the velocities such

that  I  get  the  average  temperature.  So  when  you  do  a  simulation  you  want  to  do  the

simulation  at  a  given  temperature  and  you  can  obtain  a  gaussian  distribution  at  that

temperature and assign all the initial velocities, okay.
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So now let us come to the basic algorithm of this molecular dynamics. So we know now the

equations of motion, okay, we know the algorithm, so now we are in a good position to study

the structure of this program. So how does this program work now? Set initial condition that

is I determine all the initial positions and all the velocities though these velocities could be

though  the  Maxwell-Boltzmann  distribution  or  if  you  have  already  done  the  simulation

earlier.

So at the end of the simulation you will have some velocity. So I can use the last point of the

previous simulation as the starting point for the new simulation. We will do this through a

practical session as well. So set up the initial conditions, calculate the new forces. So once

you calculate the new forces solve the equations of motion okay we have chosen a time step,

once you have chosen time steps you have new position and new velocity after a time step

delta t.

So once you do that you increment the time again. So I determine at a new time step. So now

I want to increment time further. So how long will I increment the time, suppose I want to do

a simulation for 100 picoseconds. So if my time, time has been incremented because I did

simulation for delta t. So now t has become incremented by delta t, so if this time is greater

than the maximum time that I want to simulate such as 100 nanosecond.

If  it  is  greater  than I  stop,  so if  it  is  less  I  go back calculate  new forces,  calculate  new

velocities, new positions and keep on repeating the simulation okay. So once I reach a time

step which is the maximum time I conclude my simulation. So that is the same thing written



on the right side, set up the initial system, calculate the forces on all sides, calculate new site

positions and velocities.

Repeat for N steps, this N will be determined by the maximum time t max, calculate the

physical properties and the other thing is you have to check for convergence. So we will have

more to discuss on convergence because one of the very important ideas in simulation is that

all the results you do should converge to a given value because if they do not converge there

is no meaning in this simulation.

So I shall discuss that as we go along. So the next thing I want to comment what time step do

I use for molecular dynamics okay.

(Refer Slide Time: 19:18)

So if I use a very large time step okay then energy is not conserved there will be problem

because particle will start moving too fast, they approach other particles then there will be lot

of problems with conserving energy okay. So standard practise will be that delta r/delta t

should  be  1/20th  of  the  nearest  atom distance.  So there  are  distances  between  atoms so

typically they are 3 angstroms.

So velocity  should be typically  1/delta  r/delta  t  should if  it  is  typically  less than 1/20 in

magnitude  then  that  is  a  good  time  step.  So typically  in  practise  delta  t  of  less  than  4

femtosecond is very good. Femtosecond is 10-15 seconds. So ideally one uses around 0.1

femtosecond or 2 femtosecond these are very good time steps for complex molecules. For

very simple molecules you may even use up to 5 femtoseconds.



So this  is  the time step and nowadays because we have fairly  good and fast  computers,

molecular dynamics is done for about 100 nanosecond. Remember I had a t max in the last

slide, typically one does simulation for 100 nanoseconds to get convergence okay. So now

when we do simulations another thing that is important is temperature control okay.

(Refer Slide Time: 20:40)

Usually this is not necessary but it is always a good idea to rescale velocities to the target

velocity every now and then okay. So this when you do rescaling it makes the system a lot

stable okay. Ideally in molecular dynamics one should not do rescaling, but if you do not do

rescaling many times there will be a problem so if you do rescaling once in a few steps you

get a better simulation result.

(Refer Slide Time: 21:08)



So now the next thing I want to do now we now discussed that in simulations you will be

determining a trajectory. What is the meaning of trajectory step 1, step 2, step 3, step 4, all the

way  up  to  let  us  say  100  nanosecond.  There  will  be  1000s  and 1000s  of  steps.  Let  us

typically, there will be 100,000 steps. So when I average over all the 100,000 steps I am

going to get only one average and when I get this one average I do not know whether it is a

good average or not.

So one way to solve the problem would be suppose I am doing 1 lakh steps, so I take one set

to be 10,000 steps, one block, next block will be next 10,000 steps. So this way I generate 10

blocks of 10,000 steps each, so which means for each block I have a sub average okay and

the total average will be average of these sub averages. Now if I know that this is average

over 10,000 steps one sub average, next 10,000 step another sub average.

If all these sub averages are very near each other then I know that it is a converge systems

okay. So that means my sub average does not change from one subset to another subset. So

that is one way to confirm that there is convergence. So if there is no convergence the first

sub average maybe x, the next sub average maybe 1.1x, the third one will be 1.3x. So if the

sub averages keep on changing then you know that you have not converged.

So a very good way to check whether there is convergence is to calculate sub averages then

the average overall the sub averages, okay.
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So now this is a typical example of a molecular dynamics. This is just to give you a feel now

what I have done here. I have taken a 3 particle system. So, so far we have only talked of

concepts now let us take real example. So in this there are 3 particles one at the center, one

along the y axis, one along the x axis. So I will calculate so this is my initial position. At

initial position the first position is 00, second position is 40 this is my second particle.

Third particle is 0 and 4. I calculate the forces on each of these particles using this formula. I

calculate the forces using this formula of course these are Lennard-Jones particles so there are

no charges. So I am just going to calculate the forces now. So you will see that I have printed

the forces now. On the first particle it is 55 55, second particle - 55 12, third one 12 and – that

is on the first particle both the x and y components are in this direction okay.

Whereas on the second particle the force on the x component is negative and the y component

is positive. Whereas for the third particle the x component is positive and the y component is

negative see this arrow. This is the direction of the force. So I calculate the force use the

Verlet  algorithm and calculate new position.  So I have calculated new positions and new

velocity.

At the new position and velocity, I calculated the fourth again and I calculate  again new

position and velocity, okay, then again calculate the forces, new position and velocities. So

this really illustrates the use of the Verlet algorithm numerically and an important point I

want  to  make  here  what  are  the  units  we  are  using  to  use  in  this  particular  simulation

program.  Usually  we use  time  in  picoseconds,  distance  in  angstroms,  these  are  standard

practise.

So if you use time in picoseconds and distance in angstroms the force, the units of the force

will be 10 joule per mole/angstrom. So I repeat again, if the distance is in angstroms and the

time is in picosecond energy will come into 10 joules per mole, that is the unit of energy. So

if the energy is in 10 joules per mole, force will be energy per length, okay. So my force will

be 10 joule per mole per angstrom. So that is my unit of force.

So it is extremely important to know all the units in your calculation because if you use a

wrong unit there is no meaning in your result okay. So this is how I have illustrated here a

typical example of a molecular dynamics of a 3 particle system. I illustrated 3 steps, you can



actually calculate this by hand okay. So make sure you understand everything okay. I have

given you Verlet algorithm okay.

And I have also calculated velocity using the Verlet algorithm. So now before I conclude I

want to talk about this  constraints,  what is the meaning of constraints.  Suppose I  have a

molecule like water.

(Refer Slide Time: 26:07)

As it keeps on moving the bond lengths and bond angle should not change. Because if the

bond lengths and bond angle change the water will become something like a linear water or a

right angled water, that is not a realistic water. All water molecule should have the same bond

lengths and same bond angles. So for that I use an algorithm called a SHAKE algorithm that

is to keep the bond length constraints fixed.

I want to fix the bond lengths and bond angles. So I will describe in the next class how to use

the  SHAKE constraints  and  basically  what  we  have  done  this  simulation  constitutes  an

example of a statistical mechanics. So what is the main purpose of molecular dynamics. The

main purpose is to generate a trajectory. So what is a trajectory, position and momentum as a

function of time that is called a phase space in statistical mechanics, okay.

And once you generate a trajectory then you can calculate physical properties as specific

averages okay. In particular, structural properties can be obtained from spacial  correlation

functions that is the radial distribution function and the time dependent properties these are



the  transport  coefficients  they  can  be  obtained  via  time  correlation  function  that  is  the

velocity autocorrelation function.

So what I shall do in the next class I will define the radial distribution function as well as the

time correlation function. I will describe algorithms to calculate it and once we describe the

algorithm to  calculate  it  we  will  also  use  them to  calculate  average  quantities  of  lot  of

interesting properties. So we have many interesting properties in liquids and all of them can

be obtained as some integrals over either your radial distribution functions or time correlation

functions.

So in the next class we will define both these and we will give the formulae for calculating all

the properties and then give an example of a simulation program. So once I give an example

of a simulation program so that will complete our discussions on argon then we will discuss

GROMACS and once we discuss GROMACS that will be towards the end of the course. So

you  should  be  able  to  do  MD  simulations  not  only  for  simple  system,  but  also  rather

complicated systems using GROMACS.

So  I  will  conclude  my lecture  here,  in  the  next  lecture  there  will  be  radial  distribution

functions and velocity autocorrelation functions. Thank you.


