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Welcome again, so this will be our last session on Scilab, so the last session we want to do

Fourier  transforms and Laplace  transforms,  these  transforms are  very  useful  in  not  only

mathematics, but in a lot of science and engineering. In fact, you may have heard that there

are now FT NMR spectrometers and FT IR spectrometers.

So the Fourier transforms are extremely powerful to convert data from say time domain to

frequency domain or from your spacial variables to your momentum variable. There are very

good and they have huge number of applications.
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So basically these transforms are nothing but integrals, so I want to define these transforms

and discuss how to calculate these using the programming including the Scilab programming.

So let us see the definition of Fourier cos and sin transform. So cos transform Fck is defined

as square root of 2/pi integration 0 to infinity fx cos kx dx what this does, suppose you have a

function fx, it multiplies that function by cos kx and integrate some 0 to infinity to give a

result which depends only on k now.



When x is integrated out the result will be a function only of k. So there is a cos transform. So

Fc of k is the cos transform of fx, now fx is the inverse transform of Fc. So you have a

forward for your transform going from fx to Fc of k and you have in inverse transform to go

from Fc of k * fx, these are inverse transform. So really speaking when you do the inverse

transform you should get the original function fx. So this is the cos transform. So in place of

cos if you put the sin it will be a sin transform okay.

So you have a cos transform and a sin transform, but the more general is the exponential,

remember e to the i kx, I can write it as cos kx + i sin kx. So these exponential e to the i kx is

the sum of cos and sin. So this exponential transform is really a sum of cos and sin transform.

So how is that defined f of k, now this is the Fourier transform, not the cos transform. Fourier

transform is 1/2pi – infinity to infinity fx e to the i kx dx.

So this may forward transform and when I do the inverse transform the sin is change here,

you see I had –i kx so here will be + i kx so this is my inverse transform. So for many

functions fx these transforms have been calculated and you will find several tables of Fourier

cos and sin transforms.
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I will just give one example here okay, in this example I have given several examples of

Fourier Transform Pairs. What is the meaning of Transform Pair? If I take the function fx

take a Fourier transform you will get f of k. When I do the inverse transform I get the original

function.  So exponential  of –ax,  the cost  transform is  a/a  square + k square,  the inverse

transform is e to the –ax.



So  suppose  I  take  a  Gaussian  function,  one  of  the  interesting  thing  is  that  the  Fourier

transform of a Gaussian is also a gaussian function, remember I have e to the –ax square a >

0, it is Fourier transform is e to the –k square /4a, when you inverse transform e to the –k

square/4a I will get my original function e to the –ax square. Now this is sin transform, sin

transforms are a little different because sin is an odd function and cos is an even function so

these are different.

So finally  there is  a list  of Fourier  transform okay I  have taken Fourier transforms of 3

functions, there inverse transform. So in literature you will find a large number of data points.

Now before I go into some applications let me go back and suppose now I want to evaluate

this if I want to evaluate this using the programing technique now we are all fairly good at

evaluating integrate.

So how would I evaluate, I just discretize fx into a large number of points suppose I have

1000 values of fx multiplied by cos x and I can integrate using trapezoidal rule or Simpson’s

rule, but the main point is when x becomes large, if fx becomes very large then this will not

converge.  So what is  the meaning of convergence? The integral  should give you a finite

value, okay.

So for convergence there is a requirement that at large values of x these fx should go to 0, if it

does not go to 0, you will have a divergent integral. So you can do these Fourier transform

only for certain specific functions, okay, so that should be borne in mind.
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So  now  let  me  go  to  some  applications,  what  are  some  very  useful  applications,  as  I

mentioned FT NMR, FT IR, the Fourier Transforms have great use in signal processing, so

electrical engineers, I can almost say that you cannot study electrical engineering if you do

not  do  Fourier  Transforms,  this  maybe  an  over  statement,  but  fairly  true,  so  now these

transforms are useful in solving differential integral equations as well.
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So I  will  give  you  one  example,  so  what  this  slide  shows  you  it  tells  you  the  Fourier

transform of a convolution. So G is the convolution function, f star h, this convolution means,

look at this particular line. Convolution function is, you have a function f of t you multiply by

x  –  t  and integrate  okay, so  that  you have  only  one  way. This  is  called  a  convolution.

Whenever you have f of t and x – t integrate with respect to d tau so it is a convolution

function.



So what we are showing here the Fourier transform of a convolution, this Gu is a Fourier

transform of a convolution okay. So the Fourier transform of a convolution is nothing but the

product of the Fourier transforms of G and H. So this is very useful because whenever you

have  equations  involving  convolutions  you  can  convert  them  into  products  of  Fourier

transform by taking a Fourier transform.

And when I take now an inverse transform I will get the inverse transform of the convolution.

So this is very useful okay, so convolution in the spacial domain will give you multiplication

in the frequency domain,  here u is  the frequency. So a very complicated problem in the

spacial domain gives you a very simple multiplicative problem in the frequency domain and

hence they are very useful in solving these kind of equations. So I will now next consider

Laplace transform.
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Many of you may have been familiar Laplace transform of function of t is nothing but 0 to

infinity, e to the –st f of t dt. The Laplace transform has a multiplicative factor e to the –st, for

Fourier transform it was e to the –ik. So Fourier transform has a complex exponential. So

these are  real  function now, this  is  the Laplace transform of a function is  given by 0 to

infinity e to the –st f of tdt.

So this is an example, suppose my ft is a constant function, if the function is constant, the

Laplace transform of that constant is 1/s. Now instead of a constant function, if my function

is e to the –the square. So if I take the Laplace transform of e to the –t square, it will go to



infinity because e to the –st and e to the t square, e to the t square is a very rapidly increasing

function.

So I will have a divergent Laplace transform. So just that I had Fourier Transform Pairs I can

have Laplace Transform Pairs and I will show you one application of use of this Laplace

transform.
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Suppose you want to solve this differential equation with some initial condition is the second

order derivative d2y/dt square + y = 1 y0 = 0, y prime 0 = 0, I want to solve this. How do I

solve it. Take the Laplace transform of this equation, so Laplace transform of y double prime

second derivative, Laplace transform of y = Laplace transform of 1 we already saw in the last

slide that Laplace transform of 1 was 1/s.

Now there is a formula for Laplace transform of the derivative. The Laplace transform of the

derivative is s square Ly – sy0 – y prime 0 okay. So substitute y0 and y prime 0, so you will

see that your Laplace transform of y is 1/s – s/s square +1. So when you take an inverse

transform you will  see  that  your  y  =  1-cos  t.  So  that  is  how equation  which  was  very

complicated is a derivative, it is now written as an algebraic equation.

Now algebraic  equation  you can  invert  to  get  your  final  solution  of  y  from the Laplace

transform of y, which was is you invert it you get the function, which is the solution you got.

So this way you can use Laplace transform as well as Fourier transform, but our present aim

now is to really use Scilab to calculate this Fourier transforms okay.
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So here is my program. So I am going to calculate what is called a DCT, DCT is discrete cost

transform. So what we discussed so far was continuous. What is the meaning of continuous?

It takes all values between 0 and infinity. For a discrete Fourier transform they will take only

discrete points. See we cannot do an infinite integral using a computer so what I will do, I

will  just  illustrate  calculation  of  a  discrete  cost  transform of  a  function.  So what  is  my

function now. So let me define a function.

So this is what I am going to define, ai is my function okay, my constant is 1, so I want to

determine 512 points of the function a. So what is my function, it is defined here c = 1, n =

512, spacx this is the spacing, in the x axis it is 0.01, ppi is percentage pi, if you recall we

said that percentage pi is nothing but the value of pi. So that I have equated to ppi. So I do not

call it pi because pi there will be confusion.

Already percentage pi is the 3.14, so I will define a new variable and equate it to pi. Now for

i going from 1:n remember this colon, not comma, okay, for i going from 1:n my Xi is i-1 *

spacx, so 0.01 is my spacing that means the first value is point, i – 1 will be 0. So 0 * spacx is

0. My first value of xi is 0, second value is 0.01, third value 0.02, fourth value 0.03 this way I

determine xi values for 512 points.

And my a function now is nothing but e to the –c*xi square. This is the gaussian function, I

want to take a discrete cost transform of gaussian function. So what I will do I will copy paste

all these things, I will copy paste okay these functions and go to Scilab.
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Okay, so I will just copy paste, okay, I have executed, now I can plot this function A, okay, so

let us say, plot * (a) okay so it will plot.

(Refer Slide Time: 12:55)

So it has plotted this Gaussian function, it has plotted this Gaussian function which is e to the

– x square. Now I want to take the Fourier transform of this. So if I want to take a discrete

cost transform I need to know what is my discrete cost transform, so how will I find out, one

way would be to go to the help file, remember, Scilab, one great thing in Scilab is it gives you

a help browser.
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So there is a help browser okay, so this is the help browser, so I just typed help in Scilab,

DCT is the discrete cost transform. So this is the sequence now. So this help tells you how to

do the discrete cost transform.

(Refer Slide Time: 13:43)

So you will see that this is the description okay, there are several ways of doing discrete cost

transform DCT-I, DCT-II DCT-III, DCT-IV, so many are there, so what we want to do. We

want to calculate this DCT, discrete cost transform, the algorithm is this, I hope you can see it

well, let me make it a little larger. The algorithm is the transformed variable is k okay. So I

get xk = omega k * ai * cos pi * i-1/2 * k-1/n k going from 1 to n.



This omega 1 is 1/route n for first value and for other values it is 2/n square root okay, so this

is my discrete cost transform, I can do it in 2 different ways, what are the ways I can do. I can

do the discrete cost transform through my comments.
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You see these are what I have done here. I have written my own program to calculate the

discrete Fourier transform remember there was a square root of 2/n, square root of 2 i going

from 1 to n, sum = 0. This factor is pi * k-1/n and then the integrant was ai * cos of i-0.5 * k-

1/n*pi.  So I have exactly  calculated this ft by my own program I did not use the Scilab

discrete for your transform. I use exactly my own program.

So what I will do, I will copy these commands. So I have calculated a. So I will copy paste all

my own, what I have done, I have written a Scilab program exactly like the Scilab algorithm.

Remember this was my Scilab algorithm. So I shall use the Scilab algorithm as well as my

own expression of the same algorithm and show you the calculations okay. So now I do not

need this help command anymore.

So I shall close the help command, so I will go here I will paste, I made a mistake I should

paste it. So I copy paste it okay, so it gave some warning that is okay. So it has calculated let

us see okay.
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So this is my exponential original function so I want to now see how the Scilab, I shall knock

it out. So I shall plot, I will just plot ft, so let us see okay. So this is my Fourier transform,

Fourier  transform  calculated  using  my  program.  So  let  me  also  calculate  this  Fourier

transform, discrete cost transform using the Scilab, okay. So let me close it. My function was

a, so I will say now b=dct is the direct cost transfer (a).

So ft was the Fourier transform I calculated using exactly the algorithm in the Scilab, now I

will calculate using the discrete a,1. So I am using this ,1 because it is a forward transform,

remember  there  is  a  forward  transform and a reverse transform. So my b should be the

discrete cost transform away forward direction. So let me calculate. So it has calculated, now

plot b so you will see this is the discrete cost transform calculated using the Scilab.
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This is exactly what we calculated as ft our ft and the Scilab b are identical because they use

the same algorithm. So now what I want to do. I want to calculate the inverse transform. So

what is an inverse transform. So I had a and I have got b which is the forward transform.

Now let me say c = dct of b,-1. So -1 is my inverse transform okay. So I have a forward

transform which is b inverse transform is c.

C is the direct discrete cost transform of p inverse -1. So let me do the c okay, so I calculated

c. Now c was the inverse transform so let us say plot, let me plot c.
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So we will see that this is my c which is really an exponential function okay. So my forward

transform was b, my inverse transform is c. So you see that I got this original function, c is

the  inverse  transform with  the  forward  transform,  I  am getting  exactly  the  same as  the

original. On the same graph let me also plot a. So I will now plot a on top of c, okay, so let us

see, okay, so there has been no difference okay.

There has been no difference, so what did I do. I started with a function a, which was a

Gaussian function, took the forward cost transform, took the inverse cost transform and I got

the original function. So what I have done so far is to discuss Fourier transforms as well as

Laplace transform, told you how it is so easy to calculate Fourier transforms using Scilab. It

is just to define the function and use DCT for direct cost transform.

And for sin transform maybe it is DST, so there are other ways of doing it, there are fast

transform,  fast  Fourier  transform,  FFT  again  1  for  forward  transform,  -1  for  reverse



transform. So you can in your exercises you can see the table that I had given, I had given

you a table of forward transforms and then practise using this Scilab software. So this now

concludes my discussion on application of Scilab what I will do now.

I will start discussion on molecular dynamic simulations, so this is our main application. I

will close all my word file, my main thing here was how to apply computational chemistry to

actual chemical calculations or problems in chemistry. So what I want to do, I will begin now

discussion on classical molecular dynamics calculations. So this is what we are going to do

for the next 3 or 4 hours using our own program.
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Then  after  sometime  we shall  use  GROMACS program.  So  I  shall  begin  now classical

molecular dynamic simulation, this is going to be my outline till the end of this course. Up to

now we have done lots of numerical methods, wrote Fortran programs and executed those

programs. We also did elementary programming before we did the numerical methods. Then I

used Scilab to illustrate most of the things that I demonstrated using Fortran programming.

The only thing we did not to was to write a program for finding the diagonal values of a

matrix. We just had a very simple program for diagonalization, what I will urge you, you go

to that numerical recipes, look at some standard routines for matrix diagonalization and try to

use it in your own Fortran program. Of course diagonalization using Scilab lab is very easy, it

is just a one line command, lambda.



You know that lambda, b = b diagonal your matrix a. So now I begin classical molecular

dynamics, so what is that outline, I will first introduce what is classical molecular dynamics

then consider all the systems that can be studied okay and basically we want to know how

this classical molecular dynamics can be used to do several useful calculations in chemistry.

This classical molecular dynamics very strongly depends on the intermolecular potentials.

So it depends on the intermolecular potentials and once we have the intermolecular potentials

I will be solving the equations of motion okay, normally we will be using classical molecular

dynamics that means I am going to use classical equations of motions which are Newton’s

laws or equivalent forms such as Lagrange A equations, Hamilton's equations and so on.

So  in  classical  molecular  dynamics  a  very  important  concept  is  a  periodic  boundary

conditions. The reason we use periodic boundary conditions, the number of particles you can

use in classical molecular dynamics is going to be limited into 10s, 100s, 1000s or 10,000s.

You  cannot  use  infinite  particles  because  if  you  use  infinite  particles  your  memory

requirement would be infinite and you can do very little.

So you will use a finite number such as 100 or 1000. So finite set will not represent a liquid,

it will only represent a box or a droplet. So to make your calculation agree with bulk liquids I

have to use periodic boundary conditions we will describe that in sufficient detail then in

addition to periodic boundary condition there is what is called minimum image convention

we will discuss this in a later slide.

Then  in  addition  to  classical  molecular  dynamics  we  will  also  be  doing  Monte  Carlo

simulations,  Monte  Carlo  algorithms.  These  Monte  Carlo  Algorithms  use  the  random

numbers which we have already discussed. We discussed 2 types of random numbers, linear

random numbers or uniform random numbers between 0 and 1. We also consider random

numbers which are Gaussian in nature.

So both those random numbers algorithms are used in Monte Carlo calculations then using

these algorithms what we do is we generate a trajectory. I will describe what we mean by

molecular dynamics trajectory then after you do molecular dynamic simulations what you are

going  to  calculate  these  are  called  correlation  functions.  There  are  different  kinds  of

correlation functions which are of use in chemistry.



They are spacial correlation functions and time correlation functions, then we will calculate

diffusion constant, diffusion constant tell you how the particles in a liquid diffuse then after

describing all the theoretical frame work we will execute 2 sets of programs one is our own

program  written  in  Fortran  and  then  we  will  also  describe  a  public  domain  software

GROMACS, which  is  a  very  powerful  software  and you can  apply  to  many systems of

interest okay. So now let us see what are the main features of classical molecular dynamics.
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The main features of a classical molecular dynamics are the classical molecular dynamics

tries to solve classical equation of motion. You want to solve this equations of motion for

atoms and molecules of the system. So take a system containing atoms and molecules. You

solve the equations of motion to obtain the time evolution, where going to evolve the system

as a function of time.

So that is why it is called dynamics, dynamics because how things move with the function of

time and we want to apply this to many particle systems okay, so what is a many particle

system, many particle system is anything more than 2 particles is many particles, okay, so

once you have more than 2 particles say 3 particles, 4, 5, a general analytical solution is not

possible.

You do not have an exact solution with a formula okay, just as you have formula for 2 particle

motion like hydrogen atom or an earth and sun moving together, one is a classical system,

one is a quantum system. So for 2 particles there is an exact solution, for 3 or more there is no



exact solution. So you have to use numerical methods. So that is how whatever we did in our

course all the numerical method that we used during the course will now be extremely useful

in solving these problems of real interest.

As I mentioned again we will be discussing only classical mechanics because if you want to

discuss  many  particle  time  dependent  quantum  method  it  is  very  difficult.  The  time

dependent quantum method involving the Schrodinger equation is much more difficult than

classical  molecular  dynamics  and classical  molecular  dynamics  gives  you fairly  accurate

results for certain systems. So we will also see which system we can study and what are our

algorithms for classical molecular dynamics.

And the main thing would be after you do classical molecular dynamics you study the time

evolution,  you will  average over all  the results  of your simulation okay, it  is called time

averaging, you average to get thermodynamic and kinetic properties of the system. So the

goal is your thermodynamics and kinetics. Your technique is molecular dynamics and in the

next lecture we shall let us see okay.

I will just, before I conclude let me give you examples of systems that can be studied using

molecular dynamics.
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One set is simple liquids atomic systems, ionic systems, molecular liquids and their mixtures,

ions  and  hydrophobic  particles  in  solvent  mixtures,  macromolecules,  biopolymers,

membranes, reactive media. So all the systems can be studied using molecular dynamics. So



in  the  next  lecture  I  will  be  discussing  several  algorithms  that  are  useful  in  molecular

dynamics.

So to summarize what we did today, we used Scilab to do Fourier and Laplace transforms.

Laplace transform I will leave as an exercise. Go to the Scilab website, look at the Laplace

transform, how to use Laplace transform. Fourier transforms I have already told you how to

do  it  using  your  own program as  well  as  using  Scilab,  I  introduced  classical  molecular

dynamics and in our remaining lectures in the course.

We will be discussing several aspects of molecular dynamics and Monte Carlo simulations; I

will close here. Thank you.


