
Computational Chemistry & Classical Molecular Dynamics
Prof. B. L. Tembe

Department of Chemistry
Indian Institute of Technology – Bombay

Lecture - 25
Scilab-3: Functions, Integrals, Differential Equations and Graphs

Hello and welcome to this lecture, which continues the Scilab presentation. We told in the earlier

lecture that Scilab is a very powerful software, which can do all your numerical computations

very, very effectively and this Scilab is being used on an international level for many, many

important projects. So it is a very effective software and it costs nothing.

So you know, we should always, in academic communities, we should always go for those

softwares, which are freely available, so that we have to save on our expenses. So last time, we

considered several elementary operations, which can be done on Scilab. Of special interest was

this definition of a function.

(Refer Slide Time: 01:03)

In a Scilab, we can also define a function. So I want to define a function func(x). The first line is

function value=function of x, so that is the first line and the second line gives meaning to that

value, value=exp(x)+exp(-x), end function and double slash. Double slash is only whatever

follows after the double slash is a comment card. Now we notice that in the function from the

beginning function up to end function, there are many, many statements and they are separated

by commas not semicolons, okay.

So this is how I define a function and once I define a function, I can calculate the value of that

function at any value of x, x could be any value. This is how I will calculate function in the rest

of the Scilab operation.

(Refer Slide Time: 02:01)

After this, we also considered how to use trapezoidal rule. I discussed it in the last time. I will

not repeat this part again. So you can define a variable t in the range between 0 and 1 in a

spacing of 0.01. So this is like a do loop. So I define all the values of t, 101 values through this

single, then using trapezoidal rule, I obtain an integral of exponential of t, t is already given at

101 points exp(t) is calculated at 101 points, t has 101 points and this function gives me the

integration using trapezoidal rule.

So the same thing can be done using a program and I have also discussed it in the last class. So

what I want to do today, this integration also we discussed. In particular, I want to integrate now

some function, say sin(x), so I want to integrate this function sin(x) from x, starting value is x,

okay, sorry function is x, function is sin(x), variable is x, starting value is x0, x0 is the starting

value, which I have given as 0 and x1 is an array, x1 is an array consisting of 0 to pi, spacing of

0.1.

So there are many, many points here from 0 to pi. In fact, there will be 31 points and I will be

integrating sin(x) from the starting value of x0 to each one of these 31 points, so I will have the

integral for those 31 values of the upper limit of integration. Lower limit is x0, upper limit is this

x1. So you execute it and you will see that you will be able to integrate this function sin(x) in this

range. So in place of sin(x), I could have any other function.

Suppose I have a very complicated function, which is defined through the function as I have

discussed earlier. So I can define any complicated function. Then I have a variable x and I

integrate that function between the starting point and ending point. So this is a very, very

powerful way to integrate functions for which we do not know the analytical values of the

integral. So this is how I do integration.

And since I can do the integration, then I can also solve differential equations. How will I solve

differential equations?

(Refer Slide Time: 04:36)

So this is a method to solve differential equations using Scilab. So I have this differential

equation dy/dt, okay. Let this equation be dy/dt=y square-y sin(t)+cos(t). So this is my

differential equation, y0=0 is the initial condition. So I want to solve this differential equation.

(Refer Slide Time: 05:02)

So what are the commands for that solution. 1 would be, I again now define that y dot. Y dot is

my function, function y dot=f(t,y). So this is my function. Then, y dot=y square-year-old sin(t)

+cos(t). So this is my value of y dot end function. So this defines the function and now I want to

solve the differential equation. So what is the command to solve the differential equation. So

command is ODE. ODE is the command for differential equation, okay.

What are the variables that go into that ODE? ODE will require y0, t0, t and f, okay. So y0 is my

initial value of y, t0 is the starting value of t, okay and what the values of t now, t will take on

values from 0.1 up to value of pi. So this particular line t=0:0.1:%pi, %pi means, it is the values

of pi in radiance. So this t is a variable that takes values from 0 to 3.1415 in increments of 0.1.

So these are the values of t.

So I want to solve the differential equation, so that I have the solution y for all these values of t,

okay. So that is my solution. So y=ODE y0, t0, t, f, f is the same function I defined earlier. So

you will see that this is almost like a subroutine. Remember in Fortran, we used to call

subroutine. When I call a subroutine, it takes the values of whatever variables there are and gives

me the solution to the main program.

So you assume that your Scilab is like a main program that is running and all these functions and

routines give you ways of calculating solutions to these equations. So this is to solve an ordinary

differential equation. Now after you solve, you can also plot using Scilab. 1 of the most

important advantages of Scilab is that whenever you solve a problem, you can plot it and see y as

a function of x or y as a function of t.

So we will demonstrate it as we execute all these programs in Scilab. So this is our solution of a

differential equation.

(Refer Slide Time: 07:47)

So next we will, when you give this command y=ODE y0, x0, x, f, it gives the answer of y in the

form of columns. So what are these columns. These are all the solutions of y for different values

of x, okay. So 1 to 12, these are the solutions column 1 to 12.

(Refer Slide Time: 08:09)

Then, they will have all up to full, all the columns will be there, okay. So now I have given only

between 1 and 12, others you will see when you execute yourself. So after doing all this, the next

thing I want to do a little bit is what is called Scilab programming. Remember in Fortran, we

know how to do programs in Fortran because it is a structure to that language. Everything you

want to do mathematically, there is an equivalent programming language to do that operation.

So in Fortran, in particular the do loop was do 10, i going from 1 to 10, then all the statements in

the do loop will be executed until this i takes the last value of that index variable for the do loop.

Now, for example, here I have given x going from 1:20, so that means x will take these 20

values, okay. That is this is almost like a, it should have been x, okay, let us go to the next 1. I

think there is something not correct in this. So there should be x:1:20, in which case it will take x

from 1 to 20 with the spacing of 1, so this may also take on 1 to 20 in increments of 1. This could

be the default value. Now this is how I will do a do-loop in a Scilab program.

How do I do this do loop? For i going from 1 to 10. So this is my do loop statement,

yi=xi+2:;end. So this is the do loop. In an earlier statement, I have already defined x1 to 20.

There will be 20, there will be 20, x will go from 1 to 20. So in my second loop, i goes from 1 to

10 and yi goes from xi+2. Each yi is xi+2. Now you see that this x was going from 1 to 20. So I

calculate y for those values 1 to 10 and this is listing all the values.

I have listed a few values here, first 4 values. So this is how I will estimate a do loop and what I

have done here y and enter. When I enter y, it will give all the 10 values of y, because y was only

taking 10 values. So this is how I will execute and give the output for y. So this is how I will do

some elementary program in Scilab.

(Refer Slide Time: 10:55)

So now, a very interesting thing, how will I plot using Scilab. So there are many, many options to

plot in Scilab. In fact, it is extremely powerful. So there are different kinds of plots. There is a 2

dimensional plot. There is a 3 dimensional plot. So you can practice with several types of plots,

okay. So let us take the simplest example. Normally, we need this 2D plots. What does a 2D plot

do? You have a variable x along the x axis, you have a variable y along the y axis.

So the plotting command is very, very straight forward. Plot (x,y), it will give you a 2

dimensional plot, okay. Example of this plot is given in the next slide.

(Refer Slide Time: 11:44)

So this plot, in fact what this plot does, it is the solution to that ordinary differential equation.

Remember we solved an ODE. Once you solve an ODE, you can just plot the result in this

manner. You can just plot the result, okay and once you plot, you also need to give labels to the x

axis, and y axis. So there is a procedure for that x title=ODE. So this is the title I want to give on

the x axis and this is the title I want to give on the y axis, okay.

And once you plot this graph, you can also save this graph into your directory by giving this

command xs2jpg(0,ODE). So I can save these in my hard disk using this command, xs

command. So this is how you will plot and save.

(Refer Slide Time: 12:42)

Now the next thing I want to do. Remember in chemistry we study a lot of orbitals and the radial

part of the orbital is given by a certain set of polynomials and angular plots are given by another

sets of polynomials. Those angular plots are called Legendre polynomials and the Legendre

polynomials p and x, okay. So n is the index. So I have first p0x is a constant function, p1x is just

x, p2x is half of 3x square-1, p3x is 1/2*5x cube-3x.

These are nothing but, these are your shapes of orbitals. This is your p orbital. This is your d

orbital. This is your f orbital. So similarly there are many, many functions now. So what I want to

do, I want to calculate all these Legendre polynomials and plot the entire set. Plot the entire set,

so that is what the next slide.

(Refer Slide Time: 13:50)

So this is an example of a third polynomial. So let us say, I just want to plot the third polynomial.

Here the visibility is not so good, okay. So I want to plot the value of x takes on the values

-1:0.01:1, so that is the values of x or from -1 to 1 with a spacing of 0.01. So this is my do loop.

So this will generate 201 values of x and once you generate 201 values of x, now we want to

generate all the values of y. So what are the values of y now?

Go back to the slide, values of yr 1/2 of 3x square-1, so this is my function. So that is what this is

doing, yi=, this is not 2x square-1, this is 5x cube-3x, so what it does? It calculates for those 201

values of x, yi=5*x cube-3*x whole thing inside a bracket/2:;end. So this is a do loop now. This

is a do loop, which execute for 201 values of x and calculate the function yi. Now when I say

plot xy, this will give the plot as shown below.

So this is the plot of that third legendre polynomial. This is how it will look like. Now once you

plot one graph, our interest would be can I plot several graphs on the same sheet. Because many

times when you have lots of calculations, you want to plot more than 1 graph on the same paper

or on the same setting. So that is what is shown in the next slide, but before I come to that, I will

also tell you about another command, which is called an editor command.

(Refer Slide Time: 15:51)

Now the use of this editor command, suppose you have a large number of statements, which you

want to execute and you want to save it in a file and then execute all of them together. See for

example, you may want to invert a matrix, you may want to calculate some functions, you may

want to do many, many things and you want to save it in 1 file and execute. This is like you

program in Fortran.

So in a program, you may want to do interpolation. You may want to do fitting, then you may

want to do integration. So all those commands, you want to put in one file. So to do that I can use

a command called editor. So the moment you type editor on a Scilab screen, a new window will

appear. A new window will appear, where you can write all the commands that you are going to

execute later. So this is like now a program inside a Scilab, okay.

So write all those commands using your editor and save it, okay and you save it when you save

an editor, it will save it with an sce extension, okay. It will save it with an sce extension and

when you want to execute that particular file, just type execute.filename.sce. So this is how you

will execute all the lines that are saved using an editor command. So this is an executable file. So

you can execute using a filename.sce.

So what I will do now, I will create using an editor, set of lines, so that is shown in the next slide.

(Refer Slide Time: 17:31)

So look at this slide now. What this slide is showing, I am going to create a large number of

Legendre polynomials and I want to plot all of them at the same time. So how do I create this?

As I did earlier, my x is a variable that variable goes from -1:0.01:1; so that means now this is

like a do loop. It takes all the values of x between -1 up to +1 with a spacing of 0.01, so there

will be 201 values of x.

Now to determine all the Legendre polynomials, okay, to determine all the Legendre

polynomials, I have a separate loop for each of the polynomial. For example, the first Legendre

polynomial was a constant. So I execute this loop i going from 1:201 yi=1 end. What was my

second polynomial. Second polynomial is nothing but the value of x. So for i going from 1:201,

y2i=xi; end. So this is my second function. So similarly y3, this is my third function, okay.

So there is some error here, this should have been y4, this should have been y4, this should have

been y5, this is y6, y7, y8, y9, y10. So there are these errors, but of course you can correct them,

because you know that this is the first function, which is constant. Second function is x, third

function is x square-1/2, fourth function is xi cube-3xi/2. This is my fifth function 6, 7, 8, 9, 10.

So once I generate these functions, now all these functions have been generated for 201 values of

the independent variable x.

Now I want to plot all of them, okay. I want to plot all of them so the command is given in this

particular line.

(Refer Slide Time: 19:35)

So I want to plot these 10 Legendre polynomials, okay. So but when I type all these things, I save

it, remember I created using an editor command. I save it as a Legendre.sce. Now I will execute

that entire file. So when I execute the file, it will generate me all the polynomials. Now I want to

plot. I want to plot all of them and you know that the plot commands, if I wanted to just plot y1, I

will say plot 2D (x, y1).

But since I have 10 of them, so I will plot it like this, plot 2D(x, this is a round bracket, this is a

square bracket (x, [y1, y2, y3, y4 all the way up to y10]); so this will plot all the functions. So let

us see whether I have this. I do not have it. We will execute it. We will execute it in reality when

he do the demonstration part of the Scilab. So this is plotting function. Now there is another

important function I want to spend time on.

It is called a fitting function. Remember when we did programming, we fitted a polynomial to a

set of data points, okay. So we also fitted a straight line. So Scilab also gives a procedure to fit

function to a given set of data. This is a slightly more involved set of statements than the ones so

far. Because so far, you saw that everything was either a 1 line statement or a 2 line statement.

Now this fitting function is little more involved.

So I shall illustrate all the statement first and then we will execute it in Scilab, okay. Now curve

fitting using Scilab.

(Refer Slide Time: 21:32)

I shall use it first for an exponential fit. Then I shall demonstrate it for a linear fit. So for curve

fitting what is my starting point. My starting point is x and y, x is my independent variable and y

is the dependent variable. This is the data that is given. So before I start my Scilab program, I

need all the data points. So I take some simple set of data. So what is my data now for this

exponential fit x is an independent variable, it goes from 0.1 starting value:0.2 this is the

spacing:2.1, okay.

So starting point is 0.1, last value is 2.1, spacing is 0.2. So you will have as many values, 0.1,

0.3, 0.5. So the last value will be 2.1. For these independent values of x, I have dependent values

now. What are my dependent values 0.9, 0.75, 0.6, how many do I have, 1, 2, 3, ,4, 5, 6, 7, 8, 9,

10, 11. I have 11 values of the dependent variable y. I have 11 values of the independent variable

x and now this is my fitting program. So these are all the lines.

You just look at the lines first and then execute it. So how do I execute? After I define x and y,

my next line is function y=xx, function y=ff(x,p). So this is definition of my function ff(x, p),

y=exp(-p*x), because I want to fit my function as an exponential function. So it is –p*x end

function. So the next line was definition of these functions y, okay.

(Refer Slide Time: 23:38)

So then, we need some more statements, then next statement should be z=[y:x];. So now there is

a criterion function. So what this does, this particular fitting function calculates a criterion

function e and it does several operations and giving me the final result. Function e=G(p,z), then

y=z1, x=z2; e=y-ff(x,p). So y was my original data ff(x,p) is the calculated fitted data. So what

the program does, it will keep on iterating until this e, which is an error, which is reduced to a

minimum, okay.

So the whole tic in fitting is you calculate the fitted function, compare with the data. If the error

is too much, then I reduce the error, keep on iterating. So this particular set of lines does all that

and finally it will give you fitted function, okay.

(Refer Slide Time: 24:59)

So after this set, so to solve the problem now, to solve the problem I need to give a value of p0

and p1. So p had 2 values, p0 is 0.8, okay and [p:err]=data fit(G, z, p0). So this is the function.

The next function then scf=0, it will clear the screen, then plot 2D x,y,-1, so this is plotting the

date, okay. Not next is xy,-1 plots you the data and plot 2D x, ff(x,p,12) it plots the fitting

function. So the first 1, plot D is to plot x and y and the second 1 is to plot your x.

And the fitted function and the third line in that plot function tells you what kind of plot you

have. Suppose, you want stars for your data points, you will give some number, you want some

other symbols, so the third line, the third variable in the plot gives you, how I should identify the

data, so we will execute it shortly.

(Refer Slide Time: 26:12)

So now, since I have done so this execution. So some more things here. So z, so just execute it. I

think the best thing is to execute it and get a feel for it. It is a little involved function. So this is

just the more details on what your fitting function is going to do, okay. So this tells you little

more of the nature of x and y and the nature of this z, okay. this is how the z will look like. So

this is how your criterion function works like, okay.

(Refer Slide Time: 26:48)

So if I want to extend the same thing to a linear fit. So I have done an exponential fit. Now how

will I do it for a linear fit, just see this. This is a little easier x=0.1:0.02:2.1. So this is my value of

x. These are set of data points. Now I want to fit a linear function. When I fit a linear function

what do I do, that y ff(x,p), this y function now is p1x+p2. This is a linear function. In the past, it

was an exponential function. So end function.

Then z is the same, y:x criterion function e=G(p, z), y=z1, x=z2, e=y-ff(x,p) end function. How

do I solve the problem, okay p0 I want to give an initial value of p0, remember this p is having 2

values p1 and p2, these are my initial values of p, then I define this p error, clear the screen and

plot not only y, but also fitted function y, okay.

(Refer Slide Time: 27:57)

So what I will do? I will conclude this lecture here. I have 2 more rather very simple statements.

I will explain these and then we will execute the Scilab in the next lecture. So I will close here.

Look at all these commands, look at all these slides. So that you will be familiar with all the

commands that you need to use in Scilab. I will conclude here. Thank you.

