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Hello.  We  shall  now  continue  our  discussion  on  integration.  So  last  time  we  considered

Trapezoidal rule. What was Trapezoidal rule? It assumes that the function varies linearly between

every two adjacent points.

(Refer Slide Time: 00:33)

So look at this particular set of points. I have a function which is defined at several points. So

between f xi and f xi+1 assume that is a constant. Similarly, between f xi+1 and f xi+2 there will

be another line so I assume that to be constant I assume that to be linear between every two

points.

(Refer Slide Time: 00:57)



Once it is linear between two points my integral is nothing but between every trapezoidal the

area is f xi+1+f xi/2 between every two points it is half of the it is average of the two points

multiplied by h, so between first point and the last point, so the final answer is h*f x0/2; h* f

xn/2 and all the intermediate points you have to multiply by h because both from the left side and

the right side half contribution will come.

Therefore, each of this is multiplied by h. It is very easy to program this, so I will this as an

exercise. 
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Next what we want to consider is what is the Simpson’s rule? Simpson’s rule what it does it fits a

quadratic function between 3 adjacent points. Suppose I have point 2i 2i+1 2i+2 there are these

three points, these three points I will fit through a quadratic polynomial P 2 ix. What is P 2i? This

is a Newton’s forward interpolation polynomial which we have already considered. So I give

here the entire expression for P 2i.

The expression for P 2i is f x 2i + delta 1 f x 2i/h*x-x2i+delta 2 f xi/2 h square*x-x2i*x-x2 i+1.

So this is my quadratic polynomial between x2i and x2i+2 and that polynomial I integrate, so

when I integrate these are all the steps let me define what is my first ordered difference is f xi+1-

f xi. Second ordered difference is first ordered difference at xi+1- the first ordered difference at f

xi, when you expand everything it is f xi+2-2 f xi+1- f xi. This is my second ordered difference. 

This is my first ordered difference. So you put all those differences here and integrate. So when

you integrate my final result is h/3 fx 2i + 4 times fx 2i+1+fx 2i+2. So that is the endpoints x2i

and x2i+2 contribute only one time whereas the middle point x2i+1 contributes 4 time and whole

thing you multiply by h/3. This called Simpson’s 1/3 rule. So between every interval this is my

integration.

(Refer Slide Time: 03:44)

So now let us that I split the function to many, many intervals, so let my function be x0 to x2 is

not one interval. Why is it? x0 to x2; x0 1, x2. I need three points to have a quadratic function



fitting there, okay. First three points one function between x2 and x4 that is x2, x3, x4. Another

quadratic  polynomial  between  xn-2xn  another  quadratic  polynomial,  okay.   So  have  these

quadratic polynomial between every three points and so I want to integrate between every three

points.

So since I started with three points 1,2,3 then 2,3,3 this is the next point, so you will see that you

need an odd number of points you need an odd number of points to do the Simpson’s rule, okay.

So between 1 and 3 I will have f x0 4 x1 between 3 and 5 I have f x2 4 f x3 and 2f x4 so the; it

varies like this the first point contributes only weight of 1 the last point also has a weight of 1.

And the intermediate points will have 4 and 2, okay. So first point 0th point I have called weight

of 1. Next point, this is weight of 4, third point weight of 2 and I go on doing that and multiply

by h/3. This is my Simpson’s 1/3 rule. So the way I do it would be I will execute the program

and show you how to do that. So the only problem will come, suppose n is e1, if n is e1 you

cannot implement this because there will last two points which will create trouble.

So what we do, if n is e1 between n-1 and n I use a trapezoidal rule and between 1 and n-1 again

this is an odd number of points I shall use Simpson’s rule. So whenever n is odd Simpson’s rule

is very straightforward. Whenever n is e1 the first n-1.; now n-1 is odd I will use Simpson’s rule

and the last two points I will use Trapezoidal rule. I will illustrate with a program. So this how, I

shall be using the Simpson’s rule. 
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Before I conclude this session the execution will be in the next lecture, but before I conclude this

let us consider differential equation briefly.

(Refer Slide Time: 06:10)

So  what  are  differential  equations?  In  a  differential  equation,  so  this  is  the  first  ordered

differential equation y prime x which is the derivative dy/dx that is given by f x, y. So I want to

solve this. So how will I solve this? The strategy is again to expand y in a Taylor series. So when

I expand y as a Taylor series so y at a new point n+1 point is given in terms of y at the xn+h*y1

x1 h is the spacing between xn+1 and xn. 



So y1 xn is the first derivative; h square/2 factorial y 2 xn is my second derivative. So I am

expanding my function as a Taylor series which involves all the derivatives. And the error in

truncating into the nth term I have taken up to nth derivative, the error is given by Tn+1 this is

the error in truncating the series up to n term that error is given by h to the n+1/n+1 factorial to y

n+ first derivative at some point in between at some point between xn and xn+1.

This is my Taylor series expansion. So y k as I said refers to the kth derivative. We will consider

the  two  ways  of  solving.  One  is  by  Euler  method.  What  does  the  Euler  method  do?  It

approximates y at xn+1=y xn+h*y1 this is the first derivative. So this first derivative is nothing

but this function, so it truncates here. There is my Euler expansion.
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See this one now. The Euler’s method you expand the Taylor series only up to the first derivative

and you say at new point xn+1 I have y xn+h*f xn yn. So this is how I solve the differential

equation. I know the derivative f is my derivative, using that derivative xn, yn I generate y xn+1.

Now to generate y at xn+2 I already know the y at xn+1 and now take the derivative at xn+1; I

apply the same thing to the next step. What is my next step?

Y at xn+2=y at xn+1*h*f of xn+1 yn+1 extend to n+2, n+3 and so on I can do a number of steps,

the only problem here if h is very, very large errors will accumulate severally but if h is very,



very small then you can use this algorithm, so errors are of the order of h square. So this one

Euler’s method.

(Refer Slide Time: 08:59)

There is one more very popular method which is called a RUNGE KUTTA method. I will briefly

describe this and these are not very hard to program. In the Runge Kutta method, my y prime

which is the derivative is given as a function of x and y. So I want to obtain an algorithm for the

new y in terms of an old n; from yn I want to determine yn+1, the formula is yn+1 is yn k1+2

k2+4 2 k3 + k4 divided by 6, this is my Runge Kutta algorithm. 

And what are these coefficient k1, k2, k3, k4? k1 is h*f xn, yn. f already is known. So k1 is h* f

of xn, yn. k2 is h*f of xn+h/2+yn+k1/2. I already know k1 so I evaluate k1, k1/2 then k3 is

hf*xn+h/2 and yn+k2/2 and finally k4 is hf xn+h yn+k3. So through this algorithm I can solve

yn+1 in terms of yn and once I get yn I can go to yn+1 yn+2 yn+3 so I can solve it for all the

remaining values that I want as many steps as I want. This is my Runge Kutta method.

So I will conclude lecture part here. Now we will start over computational part of the work. If

you remember the last time, there are three things I want to do. One is fitting a function through

a given set of data points. Remember, we fitted a cubic polynomial through a set of data points

that is shown in my slide.
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This shown here. You will see that I had y1, y2, y3, y4 okay and I needed to determine these

coefficients a0, a1, a2, a3. So determine these coefficients these were all given in terms of xi’s,

okay. So on 11 set of data points for the 11 set of data points first was number of data points then

sum of xi sum of xi square these are all determined from our polynomial fit. This is a fitting a

cubic polynomial to a set of 11 data points.

Once we fitted those data points this I need a0, a1, a2, a3. So how do I get these things? I have to

invert this matrix. So if I inverse this matrix and multiply on the right by the inverse I get a0, a1,

a2, a3. This is what was shown to be my set of coefficients and my polynomial will be this my

a0, a1x, a2 x square and a3 x cubed. Actually this was nothing but a function sine hyperbolic

function and the data points were all for the sine hyperbolic function. 

Now I shall show the program how to calculate this particular set of coefficient a0, a1, a2 and a3.
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So I am in my directory here. So let me do a pwd, pwd tells me the present working directory.

You will see that the present working directory is I will raise it further okay. So my present

working directory is home/bltembe/prog/fitting. So I want to go in the fitting function. I want to

fit a polynomial through my data points. So I shall see what are the files in that; these are all the

files, okay or let me just do ls.

(Refer Slide Time: 12:56)

So these are all my files in that fitting directory. fitpoly.f  fitpoly.f fitpoly-ok.f input1.dat this is a

matrix inversion and output, okay. So I will edit that fitpoly and tell you what all that fitpoly is

doing, okay. So I do I do that?

(Refer Slide Time: 13:23)



So this is my program to fit a polynomial function, okay. So what I am going to do, we already

considered a matrix inversion program. So that matrix inversion program what did he do? Once

you have given a matrix it will give you the inverse of that program. But here I need that matrix

inversion as subroutine to this program so this pogrom will call that matrix inversion subprogram

and multiply all the yi’s by this inverse to get a0, a1, a2, a3 that is my purpose.

So let us go through this step by step. So first line here says implicit real*8 a-h, o-z it means all

the variables that I am going to use are in a double precision, Real*8 means double precision,

Real*4 means single precision. Whenever you invert a matrix if all your operations are in double

precision you get much more accurate results so that is why I have this Real*8. And I have x data

11, y data 11. I had 11 values of x and 11 values of y. So this is what is my data.

Then I give a vector my a vector a0, a1, a2, a3 four dimensions and y vector also have four

values, okay. So then I also define several matrices a 4,4; d 4,4; c 4,4 it is always good to define

a large number of matrices which could be useful, okay. So what is the purpose? I have x data; y

data I want to fit the best polynomial through my x y data. So then my input is given in file 11 so

I say open unit=11, file=’input1.dat’ then open unit=12, file=’output.dat’. 

This is the parameter so sometimes you do not want to go on changing all the variables in the

program, so it is good to define parameters, okay. So here there is a slight problem. I have two



open statements, one of them I should cancel, okay. So it is opening them twice, so let me just, so

I have commented I do not want to open them twice, okay. So now I have defined an epsilon.

Remember in the matrix inversion program you do not want to divide by a very small number.

So since 0 will rarely occur anything < that 0.0000000 I think there are 1, 2, 3, 4, 6, 7 any

number <10-8 I take it as 0 okay. So I have done this. So read that ndata and xdata, okay. So first

what I want to do is to read that ndata. How many data points are there, I already know there are

11, so from file 11 it will read ndata so then once I read ndata it will read xdata i, ydata i, i going

from 1 to ndata. It will read the pairs for the ndata number of points.

And to make sure whatever is read is written I write on the screen so that everything is visible.

Okay. So now I construct the coefficient matrix. Remember I had a coefficient matrix which had

sum of xi, sum of yi, sum of xi, yi, sum of xi square, sum of xi square * yi, sum of xi cube all

these sums I have so I am determining. So in Linux if you do anything wrong it will create

problem so I have to now delete all these things.

(Refer Slide Time: 17:33)

So I in an attempt to show something I use the mouse wrongly, okay. So I initialized all the sums

I have to calculate. Now in this loop 150 i going from 1 to ndata. I will generate all these sums,

okay. I will generate all these sums, okay. So for example what is xi5, xi5 is okay, let us start

from the beginning xi=data I; yi is ydata i; xi2 is xi*xi; xi3*xi2*xi that is xi cube.



xi4th, xi5th xi to the 6th power then sumxi is sumxi*xi; sumyi is sumyi*yi; sumxi2 this is a sum

of xi square sumxi2+xi2 so exactly; sumxi6 is sumxi6+xi6 so this sums all the 6th power of that

xi, okay.

(Refer Slide Time: 18:48)

So once you generate all the sums I want to generate that matrix. So my matrix I have called it a,

a 1,1 was 11 that is andata; a 2,2 is sumxi2 that is a 2,2 is a sum of xi square. a 3,3 is the sum of

xi to the 4th this is all the matrix. Now only thing I want to see carefully, I have said I did not say

a 1,1 = ndata I called it andata because whenever I have a real variable all real variables will start

from a, b, c up to i, j, k, l, m, n are all integers.

So I want to start all real variables with those particular characters other than i to h. So the other

than i, j, k, l, m, n. So these are all my, this my matrix, so once I have this matrix. Now I have to

generate that y vector also because you know a; that y vector on the right side sumyi is the y

vector 1; sumxiyi is y vector 2; sumxi square yi is y vector 3; sumxi3yi is y vector 4. So now; so

I will write whatever I read I want to write on the screen so that is what it will do;
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Write, I have write that matrix a, and write that vector on the screen this is what I will do. So

now whenever I call that program to invert the matrix it will change all the values of the matrix

element therefore, the original value of a that I had I am saving in a old array, aold array just

saves me; whatever is a it is saved in the matrix aold. alod just saves the values of a.

So once I have done it now I will call this subroutine. call gausse a, b, c, n. So this particular call

statement it calls the subroutine to invert the matrix by gauss elimination. So I have called it

gausse,  a  was  my  original  matrix,  b  was  a  blank  matrix,  b  c  are  not  known and  n  is  the

dimension, n is the dimension, okay. So it calls that matrix program to invert my matrix and a

will be an identity matrix and b will be the inverse. 

Remember I use Gaussian elimination that has matrix a and matrix b. At the end of the Gaussian

elimination what we got was a become an identity matrix and b is my inverse. So that is how I

will call this Gauss elimination. Then these are all some write statement, I want to write all the

values of a so that now a has become an identity matrix I want to make sure it is an identity

matrix, b has become the inverse so I want to write it.

So at this point I write a, I write b, I also write the determinant okay. I also, all these are write

statements. They are not so important but they will help you to verify what you have done.
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So at this point my x vector okay my x; so that final a0, a1, a2, a3 I get by multiplying my y

vector by this b, b is the inverse of a. So when I multiply the y vector by inverse matrix I will get

all my xx, xx is my a0, a1, a2, a3. So what I am doing through this loop, 590 loop I am just

multiplying a column vector y by inverse of that matrix, so b is a inverse so inverse * y is my x,

x is the a matrix. Okay. So that is my x.

Then once I do that I will write that xx on the screen. So I want to know what are a vector, a

vector is what I am looking for. Once I have that a vector then that is my fitted polynomial, okay.

So it determines to that.
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So then what I want to do after I get my coefficients I want to compare my fitted polynomial

with the original polynomial, okay. So this is that come to this loop, what I want to do here, the

rest  is  also  interesting,  I  will  discuss  the  rest;  what  is  important  once  I  determine  all  the

coefficients I want now to calculate the function and see whether it matches the sine hyperbolic

function.

Remember I said that the actual function which was used here is a sine hyperbolic function. So

the 11 points that I have now fitted, I want to calculate in this manner. So do 1100 i going from 1

to 11. My variable, okay I want; my variable is 0.1, 0.2, 0.3; my variable 2 is; this variable is the

value variable I want to calculate my polynomial at that variable, okay at 11 points in this case,

okay. Now variable 2 is x squared, variable 3 x cubed.

So my polynomial which I want to calculate is a vector a0 + a1x + a2x square a3x cube. This is

the fitted  polynomial,  okay. Poly is  the fitted  polynomial  and analytic  function is  the actual

function sine hyperbolic function. Okay. So this poly is the calculated value using our program,

analytic function is one calculated using the analytic function and poly1 is calculated using the

coefficient which we got this coefficient we got from some material in a textbook.

So I will calculate now three polynomials. One is our fitted polynomial, one analytic function

and one polynomial using the textbook polynomial and write all that in file 12, okay.
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So this is the matrix, I will just comment on the matrix inversion program, okay. So this is a

matrix; gausse matrix inversion program. Remember a, b in the main program it was a, b, c here

I have called it a, b, aold, N. And remember this N is a variable. This is the most important thing

in my subroutine. So what I have done dimension a N, N; b N, N; aold N, N. So this means in the

subroutine I have used a variable dimension because in our case it was a 4/4 matrix.

Suppose next time you wanted to do at 10/10 matrix you do not want to create a new subroutine

with a 10/10. So this subroutine has a variable dimension so that it can be called by any program

of any dimension. So this is a variable dimension in the subroutine and this is the most important

thing. And the rest of this is entirely your matrix elimination; matrix inversion by elimination

that is exactly the same. Okay. 

So what I will do now I will execute this program and let us see what it does, okay.
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So I will now g Fortran. So it has complied without any problem. So let us do ls let us see what

are all the files here, my input1 data let us see vi.

(Refer Slide Time: 27:11)

So remember these are all my 11 data points. First point is 0 0, second point is 0.1*0.1002 last

point is 1.0 and 1.1752 so my input is intact, so I will;
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So now I will execute I have complied so I will, so when I execute okay, so it has executed okay.

So this is my original matrix which I which is my a matrix okay. So I have written this original

matrix here, okay. So this is my determinant it is; this is my inverse matrix, okay inverse matrix.

And matrix a after gausse, see that a has to become identity matrix, b is my inverse. And what I

do I also calculate; this is an important thing. I calculate the product of a and a inverse. The

product should be identity  matrix.  So look at  this last  value.  Last value says product of the

inverse and the original should be an identity matrix. You will see that all the diagonal values are

1, all the diagonal values are; look at the lower most part in the slide.

All the diagonal values are 1. And off-diagonal values are let us say it is 0.40*10-14. So in a

computer 10-14 is as good as 0. And I get this because I have used the double precision. If I use

the single precision my 0 will not be 10-14 but my 0 maybe 10-7. So it also tells you what is the

advantage  of  using  double  precision.  So  I  will  just  find  the  output  file  now, okay  that  is

output.dat vi. 
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So what we have done here, so this is the main result of today’s work. On the left extreme I have

the variables,  I took 11 values of the variable from 0 to 1 and first one was the polynomial

calculated using the present program. The second one is my analytic function. The third one by a

program by the result a0, a1, a2, a3 given in a textbook, so you will see that; this is my analytic

function the third one; this is my present program results. This is my other confidents.

And they seem to agree fair well. Look at this. Analytic function says 1.1752, this is an analytic

function.  And our fitted function give 1.174, okay whereas the other one give 1.175. So the

starting value there is a problem. The sine hyperbolic of 0 is 0. But our 0 is actually -0.0007. So

the first point is not represented very well, the error is in the 4th digit, so on a computer 0.007

okay 0.007 is different from 0 by 0.007 so that is my error. So errors are in the fourth decimal

places.

Look at this also 0.6366 whereas from my program I get 0.6351 whereas I get 0.6365 so there

will be errors in the third and fourth decimal place, okay. But still, this is how we got a fitted

function. In this case I knew that the function was an analytic function. When I do not know

whether it is an analytic function I can fit using my programs and then I can get a fitted function.

What is the advantage of this fitted function? I can use a fitted function to really now integrate.



Suppose I want to integrate the fitted function using a Simpson’s rule. I can easily integrate using

a Simpson’s rule. I can calculate derivatives. I can do many, many thinks once I have a fitted

function.  So what  you have  shown today  is  that  given  a  set  of  points  x  and  y  I  can  fit  a

polynomials through the point y through a; today we discussed a third ordered polynomial. So in

the next class we will do random numbers and integration. 

The other two programs we will illustrate in the next class. So what I urge you, you have seen

this program, compile it and execute it so that you are comfortable in this program. And this

program also tells you how to use a subroutine with variable dimension. So I will conclude here.

Thank you.


