
Computational Chemistry & Classical Molecular Dynamics
Prof. B. L. Tembe

Department of Chemistry
Indian Institute of Technology- Bombay

Lecture – 02
Writing Simple Programs: Compilation and Execution

(Refer Slide Time: 00:28)

Hello and welcome to the next lecture before I start, let me summarise what we did in the earlier

lecture, in the earlier lecture, we gave an introduction to computers and outline why we really

need to use them for calculations in chemistry, we discussed algorithms and we discussed the

simple program, we talked of operating system not too much about them but we are going to use

the Linux operating system not Windows.

Because Linux is the free software and a very, very powerful software that the sample program

we did last time but we did not execute the program, now what is the meaning of execute the

program? The program that we wrote was in the Fortran language, so do execute that it has to be

converted into machine language into an executable file, okay, so that I will explain how to do

that, so that process is called compilation.

(Refer Slide Time: 01:12)

Compilation is converting your program file in a programming language, it could be any

language; Fortran, C, Pascal, basic and you want to convert that into an executable file, an

executable file is the one which actually executes, okay so there is a command for that the

command is f77 program.f. Here, that f77 is a command and prog.f is your program file which

was written in a Fortran language.

In some situations, where f77 is not working, you may have to give gfortran, so gfortran is

another compiler, gfortran is a compiler very much like f77, some systems may want gfortran,

some systems may ask for gf77, both these are commands in that computer, so using that

command, you convert that prog.f into an executable file. Now, the name of that executable file

is a.out.

So, let us not worry at this time all the details, the main thing to learn here is that f77 or gfortran

is a command which converts your prog.f into an executable file called a.out and how do I run

the program; simply type, ./a.out, so you please remember this ./a.out, all the programs that you

compile it will be converted into a file called a.out, you and you execute it by typing./a.out.

There are other ways of doing it but we will do it as we go along, okay.

(Refer Slide Time: 03:08)

Once you type a.out, the computer will ask you to input that number m, so let us see what that

program was, the earlier program was; you read any integer, sum all the members up to that

integer and write the sum on the screen, so once you compile and type a.out, it will ask you to

this value n from the screen because that is what this *.* means, read n from the screen, sum all

the integers up to the value n through this do statement.

A do statement is nothing but it will repeat all the operations till this 10 continue until the final

value of this integer variable is reached, i is an integer variable it will go from 1 to n and it will

sum all the values then finally, write that thing on the screen; *.* refers to screen, so in the

program you read n, wrote the program, compile the program, when you execute, it will read n

from the screen, do all the calculation and file; finally, write n and msum on the screen.

(Refer Slide Time: 04:14)

(Refer Slide Time: 04:16)

Once you get n and msum on the screen, your program work is over, okay, so we talked of

compilation and so I have already reviewed what all I have said in the last time.

(Refer Slide Time: 04:22)

Now, let us discuss what are the types of files, we already talked of Fortran files, what were the

Fortran files; prog.f, qchem.f, stats.f, any Fortran files will have extension .f, so instead of

Fortran suppose you had use the C language, if you had use the C language, you will call prog.c,

nmr.c, all the C programs will have an extension of .c. Now, you can have other extensions also

suppose, you have lots of data, so to identify a file as a data file, you may just want to call it with

an extension .dat; dat, kinetics.dat, mydata1.

You can give many, many names but it is always good to give a name which gives you an idea

what you are trying to do, so what are executable files? You already knew./a.out, this is an

executable file, you can instead of ./a.out, you can call it a prog.exe, you can give many, many

names but executable files will have .exe extension, remember I already told you that when you

do f77 pro.f, it creates a file called a.out.

When you; if you want to compile a C program, it will be gcc prog.c but to run the program

again, it is ./a.out. Remember again, you write a program in the language of your choice, you

convert it into an executable file and execute the executable file by typing ./a.out, so this is what

we did earlier, write a program, compile the program and execute it, okay. Now, again let us

summarise what we did.

(Refer Slide Time: 06:19)

We talked of algorithms, remember last time, we talked of algorithms, what are algorithms?

These are nothing but representation of the program in a very unambiguous way, okay so

whatever program you want to solve like the last one, okay, it is a very simple program, you

want to have unambiguous sequence of steps or statements for carrying out the task. So, often

when you write an algorithm, it is a long sequence of steps.

So and it is easy to get confused when you have a long number of steps, so it may be better to

write it as a chart that is called a flow chart. What a flow chart does; it outlines or represents the

algorithm in a pictorial way, so that the control of flow is easily visible. For example, what are

traffic lights, what traffic lights do? It says that green means go, red means stop, yellow means

be careful, so program flowchart is just like a collection of traffic signals.

(Refer Slide Time: 07:19)

So, let us consider this particular example of this flowchart, what I want to do in this case is I am

given energy in one particular unit and I want to convert that energy into different units for

example, let us say that the value of energy is given in kilocalories per mole, let us call that x, so

if you have energy in kilocalories per mole, I want to convert that into say, electron volts, in to

say atomic units and into say, in Joules.

So, I want to convert my given energy into different units and this is a common requirement in

chemistry because you are; you get energy in some units, you want it in some other units, you

can of course use a calculator but if a program which converts from one unit to all other units at

one shot, you have got all the answers, so this is what I will do in the next program, get the input

in some unit kilocalories per mole and write the output in different units.

So, this is the flowchart I have an input, the arrow says I will read and go to this, what this oval

shape tells me in how many units, do you want the energy to be converted, okay if you do not

want to convert, say none and the program will stop but if you want to convert in electron volts,

in atomic units and in Joules, you want to do in 3 units and what we will do in the next slide is to

convert this into all these 3 units.

(Refer Slide Time: 08:42)

And this will also allow us to know how programs are written, how the operations in program are

done like multiplication, division, okay so remember, now I want to write a program actually, it

is the program for the previous task but of course converting units from one to the other is the

precious thing because you need to do it all the time. So, first one is a comment card, C is the

comment, read the values of energy in kilocalories per mole, so the first line says read into

brackets, *, * bracket complete x.

You know from last lecture that anything into brackets *, * start means read object x from the

screen, so the next line it says, eev is x/23.06. What this line is doing; if you divide kilocalories

per mole by 23.06 that is a conversion factor to go from kilocalories per mole to electron volt, so

the first line converts your energy from kilocalories per mole to electoral volts, so you got energy

in this line in electron volts.

The next line says if you want the energy in atomic units, you divide the electron volts by 27.06,

27.06 electron volts is one atomic unit of energy, the atomic unit of energy is called Hartree, so

by dividing electron volts by 27.06, you got energy in atomic units which is nothing but a

Hartree. The third line says I want to convert that into Joules now, earlier I had kilocalories per

mole now, I want to convert that to Joules.

To convert that to Joules, I am multiplying kilocalories per mole by 4.18, so that converts into

kilojoules per mole and divide that by 1000 because I had already in kilocalories, so when I

divide by 1000, I get in kilojoules, now it is kilojoules per mole. So, when I divide kilojoules per

mole by the Avogadro number, I get just in kilojoules, so I want to go from kilocalories per mole

to Joules, to do that I am multiply by 4.18, divide by 1000, multiply that by Avogadro number.

Remember that this Avogadro number is in the denominator because I have an object per mole

and I divide number per mole, so per mole and per mole cancels, so what I get it energy in

Joules, so once I do this calculation, I want to write all these results on the screen the way it is

done, write, *,* that means again on the screen now, I have done something different from the

past. I have put inverted colon and energy in kilocalories per mole; ev, au, j.

And this bracket should not be bracket but it should be that inverted colon, remember I have a

one colon here, it should instead of this bracket, it should be a colon, so whatever is written

between 2 colons, it is just printed on the screen. So, what this line does; it writes all these things

energy mole etc. on the screen, remember this is not a bracket, it is a colon just as I have this

starting colon, I will have starting colon here, so it will write on the screen.

And the next line says write *.* x, eev, eau and ej, so this is the line which really writes all the 4

quantities on the screen. Now, why I have written these energy and all this in quotation because

once I write this in the second line, this energy in kilocalories per mole will be x, in ev will be

eev, in au would be eau and ej would be j, so this is how I am writing the heading, it is like a

tabular format.

So, I can give the output as the tabular format, okay, this is just the starting point of how I write

anything other than variables on the screen, so all those will be written in a quotation mark, so

once this is done, I say stop and end, so this was the second program not a precious but previous

task I converted energy from kilocal per mole to different units, so this is one application. So,

now let us see some different functions in Fortran.

In the first lecture, I did discuss several functions, now let us say, I will go line by line, so that

you will know what each line is doing.

(Refer Slide Time: 13:13)

This says y = x + z divided by c and it is just a division operation, / is a division operation, z is

divided by c + a * b; a * b means a is multiplied by b, so in this line, there is an addition, there is

a division and there is again a addition and a multiplication, so this is the first line. Now, second

one is p = sin of theta; theta is some angle, I want to calculate sin of that angle + log of

concentration.

Remember in kinetics, we use logs of concentration, log of a/ a - x versus t, it gives you the rate

constant, so this is alog of concentration. Then the next line; q = exp; this is an exponential

function, e raised to something, exponential * bracket energy divided by Boltzmann constant *

temperature, you may know that Kt is like an energy, so if I want something exponential of

-energy divided by Kt, this is what I am going to do.

So, finally suppose I want some object d raised to power f, so when you want to raise an object

to power f, so it is r = d * * f, this is raising a variable to the power f, so this is another operation,

it is a function; exponential function. Then square root is a standard thing; t = square root of 23, I

am just calculating square root of 23 and the last line which is not visible, it says z = a cos y, so

this inverse function, remember you have a cos function.

Similar to cos function, there is a cos inverse function, most inverse functions are written as a

cos, a sin, a tan, these are all inverse function, so that is a; these are now some of the elementary

functions. So, now let us summarise what we did so far when we go to the next point.

(Refer Slide Time: 15:12)

We reviewed the first lecture, discussed types of files, discussed compilation and execution, we

discussed, what is an algorithm, we wrote a simple flowchart; we wrote another program and

executed that. So, what I want to do now, I want to write an algorithm for the sine function and I

want to calculate the sine function then discuss, what are main ingredients of programs, we have

written already programs.

But these programs just to certain elementary operations but a program will have different

aspects, then we will also talk of convergence and iterations, so convergence and iterations are

very important concepts in programming, this will become more and more apparent, as we go

along, okay. So, what we will do now; we consider the sine function, we want to calculate the

sine function.

(Refer Slide Time: 16:05)

So, we want now an algorithm for the sine function up to now, algorithm was just some new

word for you, so now I am actually giving an algorithm to calculate the sine function, so you

know that many functions can be expanded in Taylor series. What is the Taylor series? It is a

power series that is a function is expressed in terms of power suffix, so here sine function sin of

x is x – x cube/ 3 factorial + x to the power 5/ 5 factorial – x to the 7/ 7 factorial + x to the 9/ 9

factorial, next will be –x to the 11/ 11 factorial.

So, alternate signs will keep on changing sign and how far I have to go; I have to all the way, it is

an infinite series, okay. Now, what I want to do is; to construct an algorithm for this series. The

first question you will ask is that suppose, I go on summing large number of terms, will this

remain finite or will this become infinite? So, by the saving graces, your denominators are

factorials.

So, I have 9 factorial, 11 factorial, 13 factorial as x becomes larger and larger, these factorials are

very, very fast rising function, if you for example let us say, 100 factorial; 100 factorial you

cannot even calculate on your calculator because the number is too large, so factorials are very,

very rapidly rising function and plus you are also having + and – sign, some terms are adding,

some terms are subtracting so, therefore that also ensure that the series will converge; converge

means, it will give you a finite number.

So, on a computer you can only calculate those functions, which are finite, if it is in finite you

will get an error, okay. So, now what are our observations of these terms as n, the number of

terms increases, terms become smaller and smaller, so the series I am saying it may converge in

this case, we surely know that it convergence because you can calculate the sine of any angle, it

is a finite number.

Because you know, the sine value can take only between 0 and 1, we know that okay and the

other observation is each successive term can be obtain from the previous term by multiplying by

x square, now you see, let us see, first term was x cube/ 3 factorial, how do I get the next term;

multiply by x square and divide by 4 and 5, I had a 3 factorial, how do I get 5 factorial; by

multiplying by 4 and 5.

How do I get the next term? Change the sign, remember from first term, from second term to

third term, I changed the sign, so next time again I change the sign, so x fifth was there, I

multiply by x square, change the sign and multiply by 6 and 7, so I got 7 factorial. How do I get

the next term? Multiply by x square, change sign and divide by 8 and 9, so each term increases

the factorial by 2 numbers and power by 2.

So that is how I can calculate each new term, I can calculate in term, if I know the old term, so

that is called the recursion relation. A recursion relation is a relation which allows me to calculate

newer terms in terms of the old terms, okay so that is what we are going to use, so that is what

my algorithm is, so let us see what is an algorithm now. Algorithm is a set of steps, unambiguous

steps which allows me to do the calculation.

(Refer Slide Time: 19:35)

So, what I have done here, first step; get the value of x in radiants, okay, so we want x in radiants

and not in decrease that is how the sine function works, initialise the value of the sum, this is the

sum of terms, I initialise the value to some value, let me call it sum, then calculate successive

terms, okay and after you calculate the successive terms, add the successive terms to the sum,

then how many times will you add, so this is where the key to the algorithm is.

In the value of the sum does not changed by more than let us say 10 raised to -10 that is when the

new term and the old term do not changed by 10 raised to -10 that is it is a one digit in the 10th

place, so then I stop adding successive terms, okay. So, once my terms becomes very, very small,

smaller than some object, then I stop the calculation and print the value of the sum and the

number of terms, this is my algorithm.

(Refer Slide Time: 20:36)

So that is what now, is done in this program, so now this is a program to calculate sin x, so again

we will use the same do loop, so in this case we cannot use a do loop because we do not know

how many terms we have to add, so we have to use a slightly different trick, so that is an if

statement, so if statement allows you to go from one point to another based on a condition, so let

us again go linearly step by step.

First line is comment program sine x, okay this really is a program to calculate sine x, now I will

write something on the screen remember, I told you whatever is written between 2 quotation

marks, it is written on the screen, write *, * quotation mark input the value of theta in degrees,

again quotation marks, so whatever is in this, so when you execute the program, the first thing

you will see is input the value of theta in degrees, so that you know how to give a value of theta.

So, once that theta is given, okay, so I am saying next line should be which is missing here; read,

*, * theta, so after this write, the next line should be read *, * theta and it is only when you read

that theta, then I will convert x into radiants, x = theta * 3.1415265, this is the value of pi divided

by 180, so I have got the value of x in radiants by multiplying theta/pi and dividing by 180.

Remember, between this write statement and this x, there is a line; read *, * theta that was

missing here.

So, in a way sometimes, it is good to miss something, so that you will start questioning, okay, so

whenever you hear many things you have to practice and do it, computer programming cannot be

learnt just by listening or hearing or seeing, you have to execute it and you will execute in after 1

or 2 days, you will execute all these programs and show you on the screen, so that you know that

what we are saying actually happens on the computer terminal.

So, initialise the value of x in radiants. I start sum = 0, so this is my first, I have initiated sum =

0, term = x and denominator = 1, remember the first term was sin x = x, okay and nterm = 1, so

this is the first term. So what is the new value of the sum now? Sum = sum + term; term was x

and sum was 0, so in this line 10, this 10 is a line number, remember all these lines from first till

last, they all start in the 7th column that was one of our key ingredients of programs.

Only line numbers are written to the left of the 6th column, first 5 columns I can use for line

number and the first column would be for a comment card, this was the comment card, now it is

a line number, so what have I done here; I have said sum = sum + term, the first sum will be

same as x, now see the next line, denominator = denominator +2, okay, so earlier my

denominator was 1, now the denominator has become 3.

So, the next term I am calculating now, the next term will be -term multiplied by x * x divided by

denominator * denominator -1, so what was denominator here; denominator was 3, so what this

is 3 * 2, you remember that the first term was denominator was 1 factorial, the third term it is 3

factorial, so by doing this term = - term * x square by this, by; I have got the second term that is

–x cubed/ 3 factorial, this was my second term, okay.

Then, so since I calculated one more term, the number of terms has increased by 1, so I will say

n term = n terms +1, so I have got 2 terms now and my this term is –x cube/3 factorial. Now,

what I ask; I ask the question is the value of the term < 10 to the -10, if the value is much

smaller, then I go to line 10, if it is not smaller, if it is large, okay, then if it is greater, then I go

this line 10, if it is less my calculation is over, okay.

So, this is an, if statement and if statement allows you to branch, what is the meaning of branch?

If some condition is satisfied, you go to line 10, if it is not satisfied you go to the next line, so if

statement is like your traffic signal, if something is red, you do not go, if something is green, you

go, so green signal here means go to the next line, so see this line again, if absolute value of term

.gt; .gt is the comparison.

So, it says is the absolute value of term > 10-10, if it is greater that needs I have not converged,

so I should go back to 10, so I go back to 10, sum = sum + term, what did I do: add x and it is –

x2/ 3 factorial. The next i row, denominator = denominator + 2, so denominator was 3 last time,

now it has become 5 because I have added 2 to 3, then now term, this is the third term now, is the

second term multiply by x square.

So, this term has already x cube, now it is x to the 5th power and divided by denominator which

was already 3 factorial okay, now these denominator is 5; 5 * 4, okay, the 3 factorial is already in

this term of the last one, now I multiply by 4 and 5, so what I have is x to the 5 / 5 factorial,

again increase the number by 1, again compare whether the term is < 10-10, if it is < 10 -10, you

stop, if it is more than 10 – 10, go back to 10, again calculate.

Now, you have calculated 3 terms, what is the fourth term? In the fourth term, the denominator is

be 7; 7 would be now term is; this term is x to the 5/5 factorial, put a – sign, then x square, so it

is –x to the seventh, there is already a 5 factorial here multiplied by 7 and 6, so I got the new

term; -x to the 7 / 7 factorial. So, I keep on repeating and now the term will be 4, so this way I

have calculated 4 terms.

Again ask the question; is the term > 10-10, if it is > 10 – 10, go to line number 10, if not come

to the next one, so suppose that absolute value the term is < 10-10 that means, I have calculated

enough terms, so that I do not have to calculate anymore, so then I write *, * again on the screen,

n term that is the number of terms, sum fortran sin function, it will write this on the screen that I

have to have a quotation mark here, purposely missing, so that you will write the quotation mark.

So, ftsinu, this is a fortran sin function = sin x, so what I will do now; I will write n term sum and

fortran sin function, so next time I will explain you what this fortran sin function is because in

the present program, we calculated our own sum, which is with our program, fortran also has its

own functions, it has a library, this sin x is a fortran function, what we calculated sum is our sin

function, so we will calculate our sin function with the fortran sin function.

And it allows us to learn whether our program is good or not, so what we have done today is that

we wrote another program which was for a sin function gave the algorithm for it and in this

algorithm, each new term is calculated in terms of the old, we added the terms and if the function

was less, if the last was less than sum number, we stop the calculation. As an assignment here, I

have used absolute of term that is absolute value of term.

I did not used just the term, I use the absolute value of term, so you think about it, why I have us

the absolute value, so that next time when you come, we will start with this again, okay. So, I

hope you have a learnt a little bit now what an algorithm is, what a program is, how to write a

sequence of steps, what are line numbers, where you start the program lines from the seventh

column and this theme will be using throughout in our course, okay. I will stop here and continue

with other programs in the next class. Thank you.

