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Hello and welcome to today's lecture. Last 2 sessions we had on practicals. That is we compiled

several programs and executed them. Now we will receive our discussion on numerical methods

and  describe  methods  for  interpolation  today.  So  before  I  start  interpolation,  let  us  again

summarize  what  our  numerical  methods  are  there.  Now  you  see  that  we  were  discussing

numerical methods.

(Refer Slide Time: 00:43)

And what  do  these  numerical  methods  involve?  Analysis  of  errors  in  arithmetic  operations,

interpolation, curve fitting, matrix methods, integration and differential  equations, transforms,

use of random numbers, use Scilab and applications of special relevance. This is what numerical

methods are.

(Refer Slide Time: 01:04)



And we already commented last time that interpolation involves fitting a curve through the data

points. In this particular graph, you see that there is a red diamond, second red diamond, third

and fourth red diamond. These are 4 points. Through these 4 points, I want to pass that curve.

The dotted curve is the one which is passing through those points that is called an interpolating

curve, okay. So whereas the other curves are fitting curves. We will do fitting in the next session.

Today, we will be discussing only interpolation.

(Refer Slide Time: 01:43)

So what is the problem of interpolation? Suppose I have values of x0, x1, x2 and x3. These are

my independent variables on the x axis. And the y axis I have fx0, fx1, fx2 and fxn. These are my

points on the y axis. What we need is a function that passes through those points, fx0, fx1, fx2



and fxn.

We want a function to pass through those points and at points in between that, that is in the range

between x0 and x1, x1 and x2, these are points intermediate between the points on the x axis. For

those intermediate points, we want values of fx. So experiment or my data does not have those

values  of  fx  for  intermediate  values.  The  interpolating  curve  gives  me  the  values  at  those

intermediate points, okay.

(Refer Slide Time: 02:41)

So we will consider 2 methods of interpolation. There are several methods. One is LaGrange

interpolation. One is a Newton's interpolation. But Newton's interpolation finds extensive use in

many many applications. So we will do the program for Newton's interpolation first and we will

also consider LaGrange interpolation. So what does LaGrange interpolation involve? Is that the

nth order polynomial, this Pnx, n refers to the order of the polynomial.

The nth order polynomial is given in terms of fxk which are the values of the function at known

points k. So normally we take k to go from 0 to n. So 0 to n means if there are, if n is 10, 0 to n

would be 11. So those 11 values of fxk, Lkx evaluated at those 11 points, Lkx evaluated at each

one of the values of k,/Lkxk. So the formula is given in the later slide. So before I proceed, I

want to define what is a linear interpolation?

(Refer Slide Time: 03:47)



This particular slide demonstrates what is linear interpolation. x1 and x2 are the points on the x

axis and this line is a line that has values fx1 at x=x1 and fx2 at x=x2. So between these 2 points,

I  do not have any data.  And I want to interpolate  using a straight line that  is for all  values

between x1 and x2, I want to say that the function is a straight line and I want values of fx at

those points.

So how do I get the values at those points? You know that the equation of a straight line is

y=mx+C. So m is the slope, okay; C is the intercept and y is my function, y=mx+C. So how do I

write  the  interpolating  polynomial  here?  fx  which  is  the  value  of  the  function  at  any point

between x1 and x2. That fx is fx1 which is the starting value of the function, fx1, +the slope of

this.

What is the slope of this fx2-fx1/x2-x1, that is my slope, fx2-fx1/x2-x1. This is the slope, times

x-x1. So when I do this, when x=x1, you know that this term is 0, then fx=fx1, that is my starting

point.  When  x=x2,  this  x2-x1,  there  is  a  denominator  x2-x1,  both  of  them cancel.  All  that

remains is fx2-fx1. fx1 cancels with this fx1. Function becomes fx2. When x=x2, the function is

fx2.

When x=x1, the function is fx1. At all intermediate points, my function is defined through this

formula. Now this particular function will work well beyond x2 also. Suppose I extend this line



beyond, that function will  work very well  beyond this as well  as below fx1. Because a line

extends all the way on the right side as well as all the way on the lower side. The straight line

will extend and this function will give me values of the function at all points for all values of x.

But it may so happen that beyond x2 and below x1, it may not be a straight line. So straight line

is not a good method for interpolation if x1 and x2 are far apart. If x1 and x2 are very near,

straight line interpolation is very good. So now suppose I have more than 2 points, what is a

good polynomial that I can fit that is what I am going to describe next, okay.

(Refer Slide Time: 06:33)
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So remember LaGrange interpolation is a LaGrange polynomial. I already said in the last slide.

Let us go back. It is fxk*Lkx/Lkxk. I am just going to define Lkx and Lkxk, okay. So what is

Lkx? Lkx is x-x0*x-x1*x-xk-1, only the kth term is not there. That is x-xk is not here. Because I

want Lkx, x-xk is not there. x-xk+1 up to x-xn. All the products are there. There are n products

except x-xk.

So that is my, this is the polynomial. This is a polynomial of the nth order because there are n

terms.  What  are  those  n  terms?  n,  n-1,  n-2,  k-1,  k+1.  k  is  not  there  up  to  x-x0.  This  is  a

polynomial of order n. Then Lkxk is a factor where in place of x, I have xk, okay. So what is

Lkxk? xk-x0, xk-x1, xk-xk-1, just as here. xk-xk is not there because xk-xk will be 0. So that is

not there.



xk-xk+1 up to xk-xn. So this is, Lkx is a polynomial. Lkxk is just a term. So my polynomial is

fxk*Lkx/Lkxk. We will discuss this program a little later today. You may also try to program it

yourself  before  looking  at  our  solution.  Because  it  is  only  when  you  attempt,  you  are  on

programs, you will get a better mastery, okay. So now this is my LaGrange polynomial.

(Refer Slide Time: 08:26)

The next  one  I  want  to  consider  is  a  Newton's  interpolation.  This  is  slightly  different  from

LaGrange interpolation. So the formula is a lot simpler. Now I want to consider a third degree

polynomial. What is a third degree polynomial? x occurs to the third power. So in my problem, 4

values of x are given, x0, x1, x2, x3. 4 values of x are given and 4 values of the functions are

given, fx0, fx1, fx2, fx3.

Now I want a polynomial in the range x0 to x3. So whenever you find a function between x0 and

x3, it is called interpolation. Whenever you want a value below x0 and beyond x3, it is called

extrapolation. We are not too keen on extrapolation because extrapolation has far too many errors

compared  to  interpolation  and  we  have  no  knowledge  of  the  function  beyond  x3  and  no

knowledge of the function less than x0.

So we will  not worry about extrapolation.  It  is  just  interpolation.  The polynomial,  Newton's

polynomial  is given by P3x=C0, we want to determine this constant,  +C1*x-x0+C2*x-x0*x-



x1+C3*x-x0*x-x1*x-x2. So there are 4 terms here. The first term is a constant. Second term is a

linear term, x-x0. The third term is a quadratic term because x square will appear here. And the

last one is a cubic term, x cube will appear here.

So this is an interpolating polynomial for these 4 points. Whenever you have 4 points, you get a

third order polynomial. Whenever you have 2 points, you get a straight line. Whenever you have

3 points, you get a parabola. So I would want you to work how to get a parabola given x0, x1, x2

and fx0, fx1, fx2. I will leave that as an exercise. Now we want to program for this P3x, so we

want to determine the formulae for C0, C1, C2 and C3. That is the whole strategy in Newton's

interpolating polynomial. So now let us look at the formula.

(Refer Slide Time: 10:41)

The formula is given here. This is the Newton's interpolating formula. We also call it a forward

interpolation. Forward interpolation because you will go from x0 to x1, x1 to x2 and so on. So

my C0, the first constant is the value of the function at x=x0, okay. So this is my C0. C1 is given

by delta 1fx0x1/x1-x0. Now this delta 1fx0x1 is called a forward difference. What do I mean by

the forward difference?

I have a function, I take the value of the function at x1, subtract the value of the function at x0.

So this  is  the difference between fx1 and fx0.  This is  the forward difference.  So first  order

difference will be fx1-x0. Second order difference will be, okay, I take 2 first order differences



and subtract to get a second order difference. That is what is given here. C1 is given in terms of

first order difference/x1-x0.

C2  is  given  by  the  second  order  difference/x2-x0  and  x1-x0.  What  is  my  second  order

difference? Second order difference is I take the first order difference between x1 and x2. What

is the first order difference between x1 and x2? fx2-fx1. That is my first order difference between

x1 and x2, okay. Then delta 1fx0x1 will be the first order difference between x1 and x0, that is

fx1-fx0.

So first order difference at point x1, first order difference at point x2, the difference of the 2,/x2-

x0 and x1-x0. So my C2 term is a coefficient for the second value. C2 is given by this. C3 is

given in terms of a third order difference. What is a third order difference now? Third order

difference will be the difference between 2 second order differences. What is fx0x2? Fx0x2 is the

second order difference which is already given here.

This is my second order difference at x2. Now there is again a second order difference at x3. So

just as I have a second order difference at x2, I can calculate a second order difference at x3. So

the difference between 2 second order differences is my third order difference. So that third order

difference,/x3-x0 x2-x0 and x1-x0. So this is my C3. So this is the discussion on my Newton's

interpolating polynomial of a third order polynomial.

Now suppose I want to extend to higher orders. If I want to extend to higher orders, I will need

higher order coefficients. Say for C3, I had a third order forward difference. For C4, I will have a

fourth order forward difference.  C5, I will  have a fifth order difference.  So one of the main

strategies in interpolation is you do not use very high order polynomials. When you use very

high order  polynomials,  the  excess  power  is  to  very  large  values,  like  10,  11,  12.  So large

polynomials have lot of fluctuation between adjacent points.

Because you know that at nth order polynomial has n 0s. So higher order polynomials go through

0 many many times. So they are not good for interpolation. So best would be the third order

interpolation and this is the Newton's formula that I have just indicated.  Now my next thing



would be, I will take an example. I will take an example of a Newton's third order interpolating

polynomial,  that  is  what  my next  slide  is  going to  be,  okay. So look at  this  example.  This

example has data x, 4 values of x and 4 values of fx.

(Refer Slide Time: 14:54)

The first value of x is 0. The second value is 0.33. The third value is 0.66 and the fourth value is

0.99. So these are my 4 values of x and in the second column, I have 4 values of the function.

What is my function? When x=0, the function is 1. When x=0.33, the function is 1.391. When

x=0.66, my value is 1.935. And when x=0.99, my value is 2.718. So these are my 4 values of x

and 4 values of fx.

So what is a first order difference. First order difference is the difference between fx1-fx0. So

these are the 2 adjacent points. This is my first order difference, okay. This is the first order

difference between x1 and x0. x1 and x0, this is fx1-x0. The second order difference is fx3-,

sorry fx2-fx1. The first order difference, this is the third one, fx3-fx2. So I have 3 first order

difference between 4 points of the value of the function fx.

These are my 3 first order differences. How do I get my second order difference now? Second

order difference will be the difference between the first order difference at the second point-the

first order difference at the first point, okay. This is the first order difference. The difference

between the 2 first order differences is my second order difference. So between the first 2 first



order differences, I got a second order difference.

Between the second 2 first order differences, I got the second second order difference. So there

are 2 second order differences and finally I have a third order difference. What is the third order

difference? It  is  the difference between 2 second order differences.  This is  my second order

difference between the 3 points. This is my second order difference between the first 3 points. So

the difference is my third order difference. 

So once I have all these differences, now I can build a polynomial.

(Refer Slide Time: 17:04)

My next slide will show you how I build that polynomial. Remember to build the polynomial, I

need the values of C0, C1, C2 and C3. These are my values. What is C0? Fx0 which is 1.0. C2 is

second order difference at x0/2h square. C3 is the third order difference/6h cube. This is how I

calculate  my  differences,  okay.  So  the  first  order  C1  was  first  order  difference/h,  that  is

0.391/0.33, that is 1.185.

C2 was my second order  difference/2  times  h square.  Now this h is  the difference  between

adjacent points, okay. So 0.702 is my second coefficient. Now third coefficient is the third order

difference at x0/6h cube. So 0.086/0.216, 0.399. So I have the 3 values of my coefficients and

how do I get my polynomial now? Polynomial is P3x=1.



1 is nothing but value of C0, +x-x0*1.185, C1, +0.702 which is the second value, *x-x0*x-x1.

This is my x0, x1. So this is x-x0, x-x1. Finally the third value, 0.399, that is my C3, *x-x0*x-

x1*x-x2. So now this  is a polynomial  which is an interpolating polynomial  between these 4

points of data that I had. And with this function, I can calculate the values of the polynomial.

(Refer Slide Time: 18:55)

So now my next strategy would be, how do I program this. I will be describing all the lines of the

program. Then I will actually execute the program and show you in my next hour. So before I go

further, we want to make some points on these polynomials. I already mentioned that if you have

4 points, you can have a third order polynomial between these 4 points. Now if any function

passes through these 4 points, any other way of getting this interpolating polynomial will give

me the same polynomial.

There is a unique polynomial which will pass through these 4 points. I mean there is a theorem in

algebra, you can actually prove that but I will not do this in my lecture. So between 4 points,

there is a unique interpolating polynomial. So whether I do LaGrange interpolation or Newton's

interpolation,  I  will  get  exactly  the  same result.  So  there  is  an  interpolation,  uniqueness  of

interpolation.

So now I will,  let us see the difference between LaGrange method and Newton's method. In



Newton's method, what was required is that it is far more effective if the axes are spaced equally

between each other. If you recall our data, what was our data? 0.33, 0.66, 0.99. If the data is even

equally spaced, the whole process becomes very easy, okay. Whereas for leg range interpolation,

there is no requirement of any kind.

You can have any values of x0, x1, x2, x3 and you can have an interpolating polynomial. So

Newton's method is far more effective if they are equally spaced, okay. So now I shall start

looking at the program. Now look at the program. I want to start the interpolating polynomial,

okay. So this is my formulae for all the coefficients. This is how the program begins. So look at

the program carefully.

The first line is the comment statement. It is always a good idea to have comment statements in

the program because the moment you look at the program, you know what it is going to do. So

the first  line is the comment which says that the Newton's forward interpolating polynomial

degree 3. And how is the comment card written? The first character is a c. Do not consider these

squares here.

The left hands square are more the part of the ppt. Your actual first program, actual first column

in the program starts with this column. This is the first column in your programming lines. First

one is a comment card. Second one is also comment. Pnx=y0+c1+c2, this is the polynomial,

okay. So for fx in the interval x0 to xn, that is my polynomial. Kth term, let us call it tk, okay. So

what algorithm I am going to use in my algorithm?

There will be input, okay. And then I will initialize the difference table. So remember, there are

these, these are all forward differences, first order difference, second order difference, third order

difference which we have called delta 1, delta 2, delta 3. I will initialize the differences. Then

once I initialize the differences, I have all values of x and once I have all values of the table, I

can calculate the value of the polynomial for any given x, okay.

And now our strategy would be, we are always going to use N+1, that is if it is, if there are 4

points,  then I  have a third order polynomial.  This N would also refer to your degree of the



polynomial. So you have 4 data points here, okay at constant intervals. H is the interval between

adjacent  point,  okay. Np1 is  N+1.  So these are  all  the comment  cards  which is  part  of  the

requirement for our own convenience.

Now I  will  start  giving  all  the  variables  in  the  program.  So  what  are  my variables  in  the

program? X is a variable, that is how many data points I have. This 10 is arbitrary. Instead of 10,

I could have given 50 or 100. I could have given 4 also because I have 4 data points but normally

I give larger dimensions because you may have large amount of data and you want to interpolate

between adjacent points in that large amount of data.

So it is always good to declare dimensions which are much larger. So x is of dimension 10, that

means the variable x can take 10 values. Y also is 10 because if there are 10 values of x, there

will be 10 values of y. Then this del y is my difference table. This is the forward difference table.

So the maximum I will have is 10,10, right. Since there are only 10 data points, I will not even,

when there are 10 data points, there will be 9 first order differences, there will be 8 second order

differences, so maximum will be 10, so I have just defined a del y.

This is an array, 10,10. cs are for the coefficients. cs are the coefficients, I have c0, c1, c2 and so

on, okay. So then these Ts, PNs, X bar, these are all, X bar is a value at which I want to calculate

the interpolated value. So these are not so important for our present purpose. So let us say I want

to interpolate for some 100 points. What are these 100 points? Between the last value of X and

the first value of X, I had 4 data points in my program.

So what I want to do here? Is to calculate the value of the interpolating polynomial at those 100

points between X0 and XN. So the number of points will be much larger than the data points I

have because I have only 4 data points. At those 4 values of X, I already know fx. So there is

nothing to interpolate for the known values of those points. So I want to interpolate between all

the Xs in the intermediate values.

So in this case, I have chosen 100 values. So for that purpose, I divide the interval between XN

and X0 into 100 values of X. So that is my division. So now I need to read the data from files



again.  So open unit=8,  file=interpolate.dat.  This  is  my input  file  for  my interpolation.  Then

whatever  results  I  get,  I  am  going  to  put  in  the  output  file.  That  is  open  file=Newton

interpolation. So I am, for the output, I am giving newtintp as the output file, interp.dat as an

input file.

Now why do I use this term interp and newtintp? So it tells me the moment I see interp, I know

that  it  is  a  data  for  interpolation.  And  newtintp,  so  it  has  something  to  do  with  Newton's

interpolation. So in this case, so file which has access by number 8, is the input file. File that is

expressed by unit 12, will be the output file.

(Refer Slide Time: 26:13)

So my next things are the read statements, okay. I will read, so what I have to read? I have to

read NP1, that is number of points +1, okay. If N was 3, our number of points was 4, okay. NP1

is N=1 and M is the number of points at which I want the interpolated polynomial, okay. So this

Newton's interpolation method is not part of a program. So do not give any importance to this.

This particular thing is not part of the program, okay.

So this is just for our reference that in this slide, I am discussing the Newton's interpolation

method. So my next line was read 8 from that file 8 and NP1 and M. These are 2 integers. So I

am going to read those 2 integers from file number 8. Next thing I want to read all the values of

Xi and Yi. So how many are there? 4 values of Xi, 4 values of Yi, I going from 1 to NP1, okay.



So now this particular read statement, I am reading many many points without using a do loop.

So what this involves? This is called an implicit do loop. What is an implicit do loop? In the

bracket, a do loop is already implicit because I want to say Xi,Yi, I going from 1 to NP1. NP1 is

N+1. So there are NP1 points, i goes from 1 to NP1 and these values will be read. So a do loop is

implicit. The moment I put in bracket Xi,Yi, I going from 1 to NP1, it will read all those NP1

values of Xi and Yi.

Make sure you put these commas correctly. Because if any comma is missing, the do loop is not

going to work properly, okay. So this is how I will read Xi and Yi, okay. Next I am going to read

from the, so in this particular case, after I read Xi and Yi, I want to write on the screen. I want to

write on the screen what are those values because many times you read something from a file,

you do not know what is read.

So if whatever is read is shown on your screen, then you know exactly what you have read. So it

is always a good idea whatever you read from a file, write the thing on the screen or write in

some other file so that you can crosscheck that whatever you did was alright. So what I will do, I

will conclude this lecture at this point. The next lecture, we will actually execute this program.

We will execute the Newton's interpolating polynomial program.

We will  execute  the LaGrange interpolating  program. And then you will  see the results  for

yourself  on  the  screen.  So  what  we  have  discussed  in  this  lecture?  We have  discussed  the

methods of interpolation.  So there are many many methods.  But we will  use those methods

which are easy for programming purpose.

So Newton interpolation is good because it is useful in many other areas such as integration,

differential  equations  and so on.  LaGrange's  interpolation,  it  is  a  very nice  thing  to  write  a

program for but Newton's is better because I can analyze the errors as well in this particular

interpolation method. So I will conclude now. And the next lecture will be executing the entire

program. Thank you.


