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Lecture – 06
Adiabatic Processes

Today, we are going to discuss the adiabatic processes. In the previous lecture, we talked

about how to get the work done in an isothermal process. Adiabatic processes are the one

in which no heat is allowed to either enter or leave the system. And we will develop

several equations and show that when we want to calculate the work done in an adiabatic

process. We do not actually need to work through pressure and volume, if it is a pressure

volume change, we can actually work through changes in internal energy.

(Refer Slide Time: 01:25)

The reason is that let us recall that the change in internal energy delta U is equal to q plus

w; and for an adiabatic process q is equal to 0, therefore, delta U is equal to w. So, in

order to calculate work if i can simply calculate the change in internal energy that does

the work that does the job of calculating the work.



(Refer Slide Time: 02:03)

Let us take a look at the slide. Since, in order to calculate the work, we need to calculate

the change in internal energy. Let us see how we can do it. This is a plot of temperature

versus volume, and this is how the temperature will fall when the volume increases. Why

the  temperature  falls  when  the  gas  expands  under  adiabatic  conditions  or  why  the

temperature will increase when the gas is compressed under adiabatic conditions. The

reason is if you allow a gas to expand under adiabatic conditions, we are not allowing

any heat to either enter or leave the system.

Therefore any work which is done at the cost of internal energy. That means, if the work

is done by the system and you are not allowing any heat exchange, and then during

expansion, the internal energy of the system must decrease. And since the internal energy

will not just depend upon the changes in the volume, and since here we are not allowing

any heat exchange, therefore, the temperature of the system must fall during expansion.

And that is what is seen here in this figure. You see when the volume is changing from V

i to V f the temperature changes from T i to T f, there is a fall in the temperature. And if I

divide this process into two steps that is a step one where I keep the temperature constant

it remains constant T i, but the volume changes. And since we will refer to ideal gases,

the internal energy does not change in an isothermal expansion, so U remains constant.

And the second step can be now let the temperature change from T i to T f and the



volume is remaining constant and here I can use delta U is equal to C v times delta T.

This is how you can change you can calculate the change in internal energy.

Let us take a look at step-by-step. This is the first law of thermodynamics. And since q is

equal to 0, I can set  w is equal to delta U. So, calculations of delta U become very

important. From the definition of the heat capacity at constant volume C v is equal to dou

U by dou T at constant volume. And this can be rearranged to get delta U for a final

change which is C v times the difference in the temperature. And this calculation requires

the knowledge of final temperature, the knowledge of initial temperature and the value of

the  heat  capacity.  Now,  we  will  discuss  how to  calculate  the  work  done  during  an

adiabatic change. And most of my discussion unless I specify it my discussion will refer

to ideal gases.

(Refer Slide Time: 06:16)

Let us talk about the work of adiabatic expansion or if I call it as a adiabatic pressure-

volume work. Once again let  us recall  the first  law of thermodynamics.  This will  be

important throughout the discussion d U is equal to d q plus d w. And work done will be

equal to integration of d U from initial state to final state because d q is equal to 0 and

instead of d U, now I write C v times delta T. And if C v is independent of temperature, it

can come out of the integral and what we get is this expression that w is equal to C v

times delta T.



So, in order to calculate the work what we need is the information on delta T and we

need the information on heat capacity at constant volume, this is how we calculate the

work of adiabatic expansion. So, the work done during adiabatic expansion of a perfect

gas  is  proportional  to  the  temperature  difference  between  the  initial  and  final  state.

Remember that this work is being done at the cost of internal energy, therefore this w

will be same as delta U and that conclusion; we must remember that in adiabatic changes

work is directly equal to changes in internal energy.

(Refer Slide Time: 08:25)

Let us consider this special case. Under what conditions the expansion of a perfect gas is

simultaneously both adiabatic as well as isothermal. Let us try to solve this question. As I

said that the mathematical form of the first law of thermodynamics is very important in

addressing such problems; d U is equal to d q plus d w, since process is adiabatic d q is

equal to 0.



(Refer Slide Time: 09:05)

And for a finite change, I can write delta U is equal to w. For delta U, I can write n times

C v, m times delta T we just discussed and w is minus p external times delta V. From this

step to this step, what we assumed is that the process is adiabatic. From this expression, I

get delta T is equal to minus p external times delta V divided by n times C v, m. So, if I

know the external pressure changes in volume and the heat capacity, I can calculate the

change in  temperature.  From this  expression,  I  can immediately  tell  that  under  what

conditions the process is going to be isothermal.

Let us take a look at the slide this is why it what I just described that d U is equal to d q

plus d w. And then immediately for an adiabatic change, I can write that work done is

equal to C v times delta T. Remember that C v is the heat capacity for a given size of a

substance. And this C v is equal to n times C v, m number of moles times molar heat

capacity. So, there should be no confusion when I write C v or I write C v m that is why

when I discussed here I talked in terms of C v m. So, delta T will be equal to 0, if the p

external is equal to 0.

So, here you have the answer that when the gas expands against zero pressure, what is

that zero pressure means expansion in vacuum. So, you have the conditions we started

with an adiabatic process, and we find found out that if external pressure is equal to 0,

then  there  is  no  change  in  temperature.  Therefore,  expansion  in  vacuum  is

simultaneously both adiabatic as well as isothermal.



(Refer Slide Time: 12:21)

Next,  let  us  now talk  about  the  special  case  of  reversible  adiabatic  pressure-volume

changes. Remember that when we were talking about isothermal expansion of perfect

gases,  we showed  that  the  maximum work  is  available  from the  system when  it  is

operating under reversible isothermal conditions. And now let us see what happens if we

remove that  condition  of being isothermal  and carry out  the process under  adiabatic

conditions. Here we are going to derive two equations, V f T f raised to the power c is

equal to V i T i raise to the power c, where the c is the ratio of heat capacity and n R. The

second equation that we are going to derive is p V gamma is equal to constant, where

gamma is the ratio of heat capacities at constant pressure and constant volume, very easy

derivation.



(Refer Slide Time: 13:47)

Let us see how to get it. Once again d U is equal to d q plus d w and adiabatic since we

are talking adiabatic changes d q is equal to 0. So, I have d U is equal to d w. And d U is

n times C v, m times d T, and d w is equal to minus p d V, I am keeping p because the

process is reversible. And this I can say minus n R T by V into d V. Now using these two,

I can write that C v, m into d T by T is equal to minus R into d V by V or I can write this

as C v, m by R into d T by T is equal to minus d V by V. And if I now integrate from T i

to T f V i to V f then what I get is I will write here that C v, m by R log T f by T i is equal

to log V i by V f, I am consuming the negative sign.

(Refer Slide Time: 16:23)



Now, from this equation, the equation that we just derived that C v, m by R is a log T f

by T i is equal to log V i by V f, I can write log T f by T i is equal to log V i by V f raise

to the power C v m by R. And then I can further rearrange this that is T f by T i is equal

to V i by V f raise to the power C v m divide by R. Or I can write this as V f T f raise to

the power c is equal to V i T i raise to the power c with c equal to C v, m divided by R.

(Refer Slide Time: 18:33)

So, now let us look at the second equation that p V gamma is equal to constant this is

what we need to now derive. Let us see now how to get that equation that is very easy p f

V f is equal to n R T f that will anyway be valid and p i V i is equal to n R T i that will be

valid. So, from here I can write p f V f p i V i is equal to T f by T i. So, therefore, T f by

T i is equal to we have V i by V f raise to the power R by C v, m. Now, I when I

rearrange p f V f over p i V i is equal to V i by V f raise to the power R by C v, m.



(Refer Slide Time: 20:20)

From here, I get p f V f raise to the power 1 plus R by C v, m is equal to p i V i raise to

the power 1 plus R by C v, m. Now, 1 plus R by C v, m is equal to C v, m plus R divided

by C v, m and this is equal to C p, m because C p, m minus C v, m is equal to R divided

by C v, m and I call this as gamma. So, therefore my equation now becomes p f V f

gamma is equal to p i V i raise to the power gamma. Now, let us go back what we have in

this is p V gamma is equal to constant where gamma is the ratio of C p and C v.

(Refer Slide Time: 21:45)



So, what we have is C v, m by R log T f by T i is equal to log V i by V f. This rearranges

to log T f by T i is equal to R by C v, m into log V i by V f. This further rearranges to T f

by T i is equal to V i by V f raise to the power R by C v, m. This I can rearrange now to

write in this form that V i upon V f is equal to T f upon T i raise to the power C v, m

divide by R which suggest the equation V f T f raise to the power c is equal to V i T i

raise to the power c. And this is the equation that we were planning to derive with c is

equal to C v by n R or C v, m by R.

(Refer Slide Time: 23:47)

Now, let us see under what conditions the work available from the system is more, is it

under  isothermal  conditions  or under adiabatic  conditions.  Let  us take a look at  this

figure. Let us take a look at the green curve which is according to p V is equal to n R t.



(Refer Slide Time: 24:18)

See, for an ideal gas p V is equal to n R T. So, if the process is isothermal temperature is

constant, then the pressure is inversely proportional to volume, because n is constant, R

is constant and that is what you see in this green line that as the volume increases the

pressure decreases this way. Now, for an adiabatic, we just showed that p V gamma is

constant that means p is inversely proportional to volume raise to power gamma where

gamma is equal to ratio of C p and C v. C p’s since is greater than C v therefore, gamma

is always greater than 1.

Now, if gamma is greater than 1 and then if you compare- this versus this here with

increase in volume the pressure is going to decrease more sharply, because gamma is

greater  than 1.  And that  is  what  we see in  this  blue  line which is  for  a perfect  gas

adiabatic that as the volume increases the pressure is decreasing more sharply. And then

as  we  discussed  in  the  previous  lectures  that  the  area  under  the  curve  between  the

specified limits represents the work available from the system.

So, obviously, here the area under adiabatic between V i and V f is less than the area

under an isothermal case. Therefore, more work is available from the system when the

gas is expanding under isothermal reversible conditions compare to that when the gas is

expanding against reversible adiabatic in reversible adiabatic conditions. Otherwise, also

if  the process is  isothermal,  isothermal  means the temperature is  being kept constant

therefore, the internal energy of the system is continuously being replenished, and hence



the  system can  do  more  work,  whereas  in  an  adiabatic  process  the  internal  energy

decreases, therefore the work available from the system will be less.

(Refer Slide Time: 27:33)

Let us look at one of its application in the form of this question. A sample of three mole

of a gas at 200 Kelvin and 2 atmosphere is compressed reversibly and adiabatically until

the temperature reaches 250 Kelvin. Given that it is molar constant volume heat capacity

is twenty seven point five joules per Kelvin per mol calculate q, w, delta T, delta U, delta

H and the final pressure and volume. So, many quantities need to be calculated.

(Refer Slide Time: 28:23)



However, as I expressed earlier also that we can straightaway start with the first law of

thermodynamics delta U is equal to q plus w. And since the process is adiabatic q is

equal to 0, therefore, delta U is equal to w. So, when we calculate delta U then we do not

need to calculate w through p and V because delta U will be equal to w. And let us see

how to calculate that. Let us take a look at the slide. Adiabatic process q is equal to 0. So,

therefore,  delta U has to be equal to w, we can use again here the definition of heat

capacity C v which is dou U by dou T at constant volume which will give us delta U

which is equal to n times C v, m times delta T. And it has to be equal to work by the

arguments given above. Now, you substitute the numbers n is 3 mol, C v, m is given 27.5

joules per Kelvin per mol, temperatures are also given 250 and 200 Kelvin’s as the final

and initial temperature, and this turns out to be 4.1 kilo joule.

Next,  we  need  the  final  volume.  And  final  volume  can  be  calculated  from  this

expression, because you remember we just showed that V i T i raise to the power c is

equal  to  V f  T f  raise  to  the  power  c.  And  if  we rearrange  that  we will  have  this

expression V f is equal to T f by T i raise to the power C v, m by R into V i, V i can be

calculated from n R T i by p i because this is an ideal gas. And once we substitute all the

numbers with a suitable value of R, a liter atmosphere per Kelvin per mol the volume

comes out to be 11.8 liter, this is the final volume. Then immediately if I know the final

volume, and since it is an ideal gas I can calculate p f which is equal to n R T f by V i,

this is 5.2 bar.

Now, the only thing that is left over is to calculate the change in enthalpy. And change in

enthalpy again we can calculate from this expression delta h is equal to delta U plus n R

delta T. and here we have the value of delta U we have already calculated we know the

value of n R delta T you substitute the numbers. And here I am converting joules into

kilojoules by dividing by 1000 the number comes out to be 5.4 kilojoules. So, the way to

solve these type of questions when the process is adiabatic, it is always a good idea to

start with the first law of thermodynamics, and then to see how we can use the different

definitions to get the answers for the various thermodynamic quantities that have been

asked.

So, in this lecture, we discussed how to calculate the work done in an adiabatic process.

We discussed that we actually do not need to work through pressure and volume; we can

work through the changes in internal energy because q is equal to 0. And then once we



know the changes in internal energy, we can get the other thermodynamic quantities. We

will discuss more in terms of numerical problems in the future lectures. And if there are

any questions or queries, we will discuss those in the help session.

Thank you very much.


