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Diffusion equation: Method of images 

 

Welcome to this our series of lectures on the fundamentals of transport processes, where 

we were looking at how to solve the diffusion equation in the limit of small Peclet 

number, where the transport is basically diffusion dominated because the convective 

transport is much smaller than that due to diffusion. We had looked at different 

problems, problems in a Cartesian coordinate system for example, problem in a spherical 

coordinate system, the effective conductivity of a composite. I had in the previous lecture 

given you the general solutions for a spherical coordinate system as a series of spherical 

harmonics. 
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You can see there are two of these spherical harmonics: one is increasing proportional to 

r power n and the other is decreasing as 1 over r power n plus 1.  

These are the general solutions and I had told you that the solution for heat conduction 

from a sphere was a special case where n was equal to 0, the sphere in a linear 

temperature gradient was the special case where n was equal to 1, but we still did not 



have a clear picture of what these spherical harmonics actually mean and I was trying to 

give you a physical interpretation based upon the heat conduction due to point sources. 
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So, I had defined the heat conduction due to a point source, wherein the inhomogeneous 

term in the equation is equal to an energy generated per unit time times the delta 

function. Delta function is an idealization of a function which is nonzero only at 1 point, 

it is 0 everywhere else in space, the integral of that of that function over the volume is 

some finite number; in this case the delta function is defined so that it is normalized to 1 

and I try to give you some physical understanding of the functions which can be 

idealized to a delta function.  

In three dimensions it is a function which is equal to 1 over h cubed only in cubic 

differential volume its 0 everywhere else and the integral of that over volume is equal to 

1, and I showed you that the temperature field due to this point source is just equal to Q 

by 4 pi k r; where Q is the energy that is generated per unit time from the source. So, 

even though it has 0 volume, the energy generated per unit time is finite which means the 

flux has to go to infinity at the surface. 
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Now, for this source we had seen how to solve problems; if you this is basically an 

inhomogeneous equation with the delta function as the inhomogeneous term. So, it is a 

Poisson equation, which contains the laplacian of the temperature field plus a delta 

function as the inhomogeneous term. There showing you that the solution for that is Q by 

4 pi k r. The temperature of course goes to infinity as r goes to 0, the flux which is the 

derivative the temperature goes as 1 over r square volume goes as r square; so the total 

heat generated is finite.  

If you had the source at some other point you just have to take the distance from the 

source point. If you had two sources calculate the temperature due to each one of those 

sources and add them up, this works only for delta functions as I had shown you 

previously it does not work for finite objects because when you separate the problem into 

two different problems, the physical boundaries all have to be the same in both of those 

problems. 
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You can separate out into two problems in one of which the object, one object is 

generating heat at the other is not. In the second the second object is generating heat and 

the first is not and then add them up that is always valid, but when you do that separation 

the physical boundaries have to be exactly the same in both of those objects and because 

of that you do not gain much for finite objects, since the delta function has infinite 

decimal volume, the volume is 0, physical boundaries do not matter because the volume 

itself is 0 so therefore, in the case of delta functions the superposition is simple, it yields 

useful results and it can be used for cases where you have a distributed source. 
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If you have a distributed source, you can separate that source into small infinitesimal 

volumes; and the entire heat generated within that volume can be placed at its center 

because the volume itself is going to 0 so the heat generated from that volume 

approximates the delta function as the volume goes to 0 and then you can add it all up, 

you can find out the value of the temperature at a location due to each one of those 

sources and in the limit as the volume goes to 0 this basically becomes an integral and 

therefore, this is the solution for the temperature field due to the distributed source and 

we had seen an example how to solve that. 
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For in this case for a wire which is extended along the y axis we had seen this is non; the 

source, is now a source per unit length therefore, we had idealized it as 2 delta functions 

in the x and z direction, because it is confined to x is equal to 0 and z is equal to 0; this is 

a wire that is extended along the y axis and we had seen that when the distance from the 

wire becomes much larger than the extent, it basically looks like a point source, the 

details do not matter it looks like a point because the distance from the source is much 

larger than the extent of the source. 

In the opposite limit you get a solution that is basically the solution for the diffusion 

equation the poison equation in two dimensions, because the distance from the wire is 

much smaller than the extent of the wire. So, the wire effectively looks like an infinite 

object, because the distance from the wire is much smaller than the extent of the wire. 



Infinite object in three dimensions is effectively a point at the origin in two dimensions 

in this two dimensional case and to cover the solution in that case as well. So, we can do 

this for distributed sources for point sources and so on, real problems invariably have 

physical boundaries. So, how do we extend this for the case where we have a physical 

boundary? 
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So, let us say that I had a boundary here, I will call this as z is equal to 0 and I had a 

point source at this location and the distance of the point source from the boundary was 

L and let us assume that this was an insulating boundary, there is no heat conduction 

across this boundary. So, this is an insulating boundary when z is equal to 0 and the 

source is at some location x, y, L set the height L from the insulating boundary. 

If the boundary were not there then the temperature if Q was the energy that was 

generated per unit length, the temperature Q would just be equal to I am sorry the 

temperature T would just be equal to Q by 4 pi k into let me call this as the source point. 

So, this is x s, y s and L it that could be the temperature field at the location x y z that 

would be the temperature field at the location x y z at any point T at; however, this is not 

going to be the temperature field in this case, because I do have an insulating boundary. 

In the insulating boundary what should happen? If there were no boundary then the heat 

flux lines would all be isotropically outward this is generating some heat, so the heat flux 

lines would all be isotropically outward spherically symmetric. 



In this case since the boundary is insulating, the flux lines cannot go through the 

boundary. So, therefore, there is going to be a distortion to the temperature field due to 

the presence of this insulating boundary and the question is how do we calculate that 

how do you calculate the distortion to the temperature field due to this insulating 

boundary? Basically at this boundary you require that q z is equal to partial T by partial 

z; minus k partial T by partial z this has to be equal to 0 at this insulating boundary there 

should be no temperature variation perpendicular to the surface, if its insulating because 

the flux has to be 0. 

This seems like a rather complicated problem to solve, it turns out it is not that 

complicated. The reason is that rather than solving this problem, I can replace it by 

another problem where I do not have a physical boundary, I do not have a physical 

boundary, but rather I put a point source at Q at x s, y s and L and another point source 

symmetrically about this plane at the mirror image of this point source, another source Q 

at x s, y s and L. So, I do not have a physical boundary, but rather I construct another 

problem where instead of the physical boundary, I put another point source at the mirror 

image of this point source reflected in the boundary.  

Now what should happen? You know that the flux lines all go outwards on this, they go 

outward on this as well it has the same source strength and just from the symmetry of the 

problem, it is easy to see that the flux lines to be symmetric; based on the symmetry of 

the problem it is easy to see that if I have two such sources radiating symmetrically, the 

flux lines along the central plane have to go tangential to the plane; that means, there in 

this case just from the symmetry there will be no heat flux through the central plane, I 

should write this as minus L my apologies. 

The second source is located at minus L, which is the reflection of this first source on the 

boundary. So, as far as the physical problem is concerned, the physical problem is in the 

upper half space, for that physical problem this 0 flux boundary condition it is identically 

satisfied by this second problem, where I do not have a physical boundary, but I have 

another source at the point where this boundary is reflected. So, since the solution of this 

the symmetric the boundary conditions for this problem are the same as the boundary 

conditions for this problem; the equation is the same in the physical space the equation in 

the physical space is del square T, plus Q delta of x minus x s is equal to 0, there is a 

physical problem in this upper half space this is the equation.  



The boundary conditions in both cases are the 0 flux boundary conditions therefore, the 

solution has to be the same, the solution at an observation point for this is going to be 

equal to T at is equal to Q divided by 4 pi k into x minus, minus x s. So, for this problem 

the solution is going to be equal to Q by 4 pi k into x minus x s, where x s is the source, x 

s is the source location, but I also have a second source the image source, the image of 

that original source. 

So, I will get a second term which is due to this image, that image has the heat generated 

per unit time by the image is exactly the heat generated per unit time by the real source, 

only then will the problem be symmetric and the flux through the surface be 0 therefore, 

I have a second image which is 4 pi k into x minus the image point, that is the solution 

for this problem and since this problem has the same equation in the physical space as 

well as the same boundary conditions as this problem that is the solution for this problem 

as well. So, I have a no flux boundary condition in the physical problem and the 

temperature field has to be calculated in the upper half space, I replace it by another 

problem which has a source in the upper half space and an image source in the lower half 

space such that the boundary conditions with the surface are identical to the original 

physical problem. The heat conduction equation is identical because you have a source 

only in the upper half space. 

Therefore the solution has to be identical. So, basically this problem of a boundary I have 

replaced it by a problem where I have two sources in such a way, that the conditions at 

the mid plane are identical to the conditions that I would have had at the boundary. So, 

this is called the method of images; this works for a point source and it is not too difficult 

to see that it will also work for more complicated volumetric sources. 
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If I had for example, an insulating surface and I had some volumetric source over here 

with some distribution of energy per unit volume per unit time. The energy from this is 

going to be radiated, but; however, since I have a 0 flux condition, at the surface the flux 

lines have to go parallel to the surface and therefore, I can write the temperature at any 

observation point you cannot write it as.  

This worked only when I had a source in an infinite medium, in this case I have a finite 

boundary at this location z is equal to 0; however, I can replace this problem by another 

problem, where I have a source identical to this one which is generating heat and I have 

an image of that same source, at the image location if it were reflected in the surface S of 

x I with exactly the source same source or strength. If I put those in, I am only interested 

in the temperature in the physical half space, but the temperature in the physical half 

space in this configuration is identical to the temperature in the physical half space in this 

configuration because both of these in the physical half space the equation is the same, k 

del square T plus S of x equation is the same the boundary conditions are the same both 

of these problems satisfied the 0 flux condition. 

Therefore all I need to do is to add a contribution due to the image. V I image is an 

imaginary construct it is constructed so that I get back the correct boundary conditions at 

the surface is constructed so that the correct boundary conditions the 0 flux conditions 

are recovered at the surface, times the image divided by 4 pi k. So, this is not the correct 



expression because I have replaced the boundary conditions at this boundary by an 

alternate problem, which satisfies the exact same boundary conditions at that exact same 

boundary. This can be done for 0 flux conditions; it can also be done for example, for 

constant temperature boundary conditions at this boundary.  
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So, let us say that I had a boundary, in which I had specified the temperature at the 

boundary to be a constant value and I had a source here. Now how would the problem 

look like? If the temperature is right to be a constant at this boundary; that means, that 

the variation in temperature along this direction is 0, the variation temperature along the 

boundary is 0 because the temperature is a constant at this boundary. 

What that means is that the variation in temperature can be only perpendicular to the 

boundary, we know that q is equal to minus k grad T, the variation temperature q z is 

equal to minus k partial T by partial z. If z is this axis here, the variation in the 

temperature in the x and y directions are 0, is equal to 0 the variations in temperature 

along the x and y directions are zero; that means, that this is equal to minus k partial T by 

partial z times e z. So, the flux is perpendicular to the boundary, flux is along the z 

direction because there is no variation in temperature along the plane. So, the entire flux 

at all of these points has to be perpendicular to the surface.  

In the previous case when there was a 0 flux condition, the flux lines had to be parallel to 

the surface in this case because the temperature is a constant along the surface, there is 



no variation along the surface therefore, the flux has to be perpendicular to the surface. 

How do I solve this problem? I have a point source here Q at the location source 

location, I can replace it by an alternate problem where this is z is equal to 0 rather than 

using a point source, I use minus Q. So, within this source strength is Q, so the heat flux 

lines are all outwards on this. In this case it is minus Q, so the lines are all inward and 

just from the symmetry of the problem it is easy to see that the flux lines in between 

these two have to all be perpendicular to the surface. 

because I have a source at one point symmetrically I have a sink therefore, the energy 

that is being coming out of that source has to go back into the sink because both of them 

have equal strength: one is generating Q per unit time, the other one is absorbing Q per 

unit time. These two have equal strengths therefore; this corresponds to a case where the 

flux lines are always perpendicular to the surface at the surface itself.  

Which is exactly the boundary condition that I require for the original physical problem; 

so rather than having a source with a constant temperature boundary, I have a source and 

a sink located at the image of that source in the boundary. For this second problem the 

temperature is quite easy, is equal to Q by 4 pi k into x minus x s that is due to this first 

the source function. For the sink it is minus Q; minus Q by 4 pi k into x minus the image. 

So, therefore, this combination of the source and sink essentially mimics the constant 

temperature profile condition at the mid plane between these two. So, therefore, for any 

boundary condition whether it is 0 flux which means that the derivative temperature has 

to be 0, or constant temperature which means that the temperature minus T infinity has to 

be 0, in either of these cases you can replace the original problem by a second problem 

where you replace the physical boundary by a source or a sink located at the image of 

that boundary.  

Solve that problem for the image of that boundary and you will get the correct 

temperature field in the physical space which is basically the upper half space. So, that 

procedure this method of images can be used effectively to represent boundaries. In this 

case they are just flat boundaries, but; however, they can be used even in more 

complicated cases. So, what I have shown you is what all we can do by this delta 

function representation and the extension of the delta function representation to finite 

objects 
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The extension of the delta function generation representation to finite objects by the 

method of images; by using images in order to represent the same boundary conditions 

that you would get at a physical boundary. 

So, these are the solutions that I got for you by the method of images, by the writing the 

equation as a delta function. 
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This is called the method of greens functions in the solution for that T of x is equal to 

integral d V prime S of x prime divided by 4 pi k into x minus x prime; where I had 



shown you how to express this distance in terms of the x y and z coordinates: x prime is 

the source point x is the observation point you are interested in the temperature at a given 

location x as a function of that the sources that are there in this differential volume.  

In the spherical coordinate system, I had also shown you if I have k del square T is equal 

to 0, the temperature is equal to sigma n is equal to 0 to infinity; for n is equal to 0 I had 

shown you that the temperatures is equal to Q by 4 pi k r (Refer Time: 27:46) for n is 

equal to 0 the solution is the same that I got for the delta function. So, this is the solution 

for k del square T plus Q delta of x is equal to 0. A specialized form of this particular 

more general equation that corresponded to n is equal to 0 in which case m was equal to 

0. What would the other terms mean or do the higher terms mean, how can they be 

understood in this context? That we will continue in the next lecture, I will try to show 

you the relationship between note we had solved for delta function sources and what we 

got from the spherical harmonic expansion.  

So, we will continue that in the next lecture. I will see you then. 


