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Diffusion equation: Method of Greens functions 

 

This is our continuing series of lectures on diffusion dominated transport and as I told 

you we were looking at the case where we had to solve the diffusion equation the 

Laplace equation, for either the temperature or the concentration field is equal to zero.  

(Refer Slide Time: 00:38) 

 

So, the equation is basically of the form K del square T, plus any sources or sinks is 

equal to 0. 

We had considered the specialized kind of a source which is a point source, that point 

source it is located at a point the volume of that goes to 0, in such a way that the energy 

generated per unit time is a constant. So, if we have a point a source whose volume goes 

to 0 and therefore, if the energy generated is a constant, the flux has to go to infinity. 

You define the delta function previously, in this particular case the delta function is 

defined such that delta of x. 
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Such that delta of x is non zero only at x is equal to 0, and it is equal to 0 everywhere 

else the integral of the delta function over the entire volume has to be equal to 1. So, it is 

an idealization of a function which is non zero only in the at the origin where X is 

between minus h by 2 n plus h by 2 and Y is between minus h by 2 and plus h by 2 and Z 

is between minus h by 2 and plus h by 2 and within this region it has an attitude of 1 over 

h cubed. There are other ways of expressing the delta function as well, this is the 

simplest way; however, regardless of how you express the delta function the solutions 

that I get for this delta function will end up being the same. 

So, I showed you that if we have an equation of the form k del square T plus Q delta of x 

is equal to 0, the solution of that is temperature is equal to Q by 4 pi k r. So, this 

temperature field is the solution for the Laplace, rather the poison equation; a Laplace 

equation with an in homogeneous term. So, I had shown you that when the sources at the 

origin you get Q by 4 pi k r, there are is the distance from the origin; when the sources at 

some other location you just have to take the distance of the observation point from the 

source point the vector distance, that in this case was equal to the magnitude of the 

vector x minus x s where x is the observation point and excess is the source point. 

I had shown you super position; if you have two different sources at the observation 

point, you can find out the temperature due to each of those sources individually and add 

them up and you will get the source the temperature due to the two sources together, that 



works only when the sources are in the form of delta functions when you have point 

sources of infinitesimal volume.  
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In general if you have sources of finite volume, that principle does not apply in gentle 

you have to keep the solid boundaries the same therefore, the source of the delta function 

type is a special source and that is the reason that it is useful for getting these equations. 

So, I showed you that for two sources you can get a solution by a superposition. 
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Now, what if you had some volumetric source? You had some region in space where let 

us say some reaction was generating a certain amount of heat, that heat being generated 

per unit volume per unit time and considered as Q of x prime, they should be careful here 

because I have used capital Q for an energy per unit time, so rather than using that I will 

use a different notation for the energy per unit volume per unit time. So, I will consider 

this as some source S of x, that is the energy generated per unit volume per unit time and 

I want to find out what is the temperature at some observation point x, that observation 

point could be within the source or outside does not matter. So, how do I do that? I 

already have a solution for a point source, that solution is T is equal to Q by 4 pi k can be 

write this as source point. 

So, there is the temperature field for this. So, what I can do is, I can take this object; I 

can take this object divided into a large number of small volumes, the volumes can be 

defined with centers at delta V1, delta V 2 etcetera delta V N divided into a large number 

of volumes a label them as 1, 2, 3, 4, 5 etcetera the volumes our delta V 1, delta V 2 

etcetera up to delta V N, the centers are at locations x 1 vector, x 2, x N. 

So, the sources within this volume I am going to be of the form S at x 1 delta V 1, S at x 

2 delta V 2, S at x 3 and so on. So, those I can consider to be point sources at the centers 

of each of these volumes these I can consider to be point sources at the centers of each of 

these volumes. If the volumes are small enough the fact that you are combining the entire 

source at it is center does not affect the problem because the extent of the volume is 

much smaller than the distance from the observation point of each of these. The extent of 

the volume is much smaller than the distance from the observation point so this is 

effectively a point source. 

So, once I have defined it this way I can straightaway write down what is the total 

temperature field. I just have to add up the temperatures due to each one of these points 

sources. So, therefore, the total temperature field will be equal to summation over all i is 

equal to 1 to N ok of delta V i into S of x i, I am use a capital index here, times the 

source at the location x I divided by 4 pi k into x minus x I. So, I just added the 

temperature due to each one of these point sources.  

The source strength in this case delta V times the source, that divided by 4 pi k times the 

distance between the source point and the observation point, that is my expression for the 



total temperature. In the limit as delta V goes to 0 I can equivalently write this as an 

integral over the volume; this is integral over the source volume of the source strength at 

that location by 4 pi k into x minus x prime, where x is the observation point, x here is 

the observation point x prime is the source point x prime is the location on the source and 

your integrating over x prime which is over the entire volume of the source.  

So, this one here is the source point and this S is a function of the source point and the 

integral is over the source point and from that you get the value of the temperature at the 

observation point x. So, you can do that for any distributed source for any finite object, 

provided the source is specified you can get the temperature field at any observation 

point by using this expression. So, this effectively, recall that we started off trying to 

solve the temperature k del square T plus S of x is equal to 0, that was the differential 

equation for the temperature that we were trying to solve the poison equation with an in 

homogeneous term and using this delta function construction, we have managed to get a 

solution for that T is equal to integral d V prime, S of x prime by 4 pi k into x minus x 1; 

this is an integral relation this gives us on the left side this gives us the temperature at the 

observation point x the temperature at the observation point x, as a function of the source 

location and the source strength distributed source. 

So, this is effectively the integral equation that corresponds to this differential equation, 

there is a solution of this differential equation and you can use this formulation to find 

out the temperature due to any field. So, let us briefly look at how we have do it for a 

simple problem, and that is the heat generation due to a wire.  
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So, if I have a wire of total length L, extending from Y equals minus L by 2, 2 y equals L 

by 2; this is generating some heat this is the finite wire, you can think of it something 

like an immersion wire for example, which is immersed in a fluid is generating a certain 

amount of heat and you would like to find out what is the temperature field around this 

due to the presence of this wire. The heat being generated is equal to S per unit length of 

wire per unit time that was the heat that is being generated. This wire of infinitesimal 

thickness, if it has 0 thicknesses in the x direction and 0 thicknesses in the z direction and 

it is a certain amount of heat generated per unit length. 

So, you have to solve the equation k del square T plus this as infinitesimal thickness in 

the x and z direction. So, this is delta of x, delta of z times S ok is equal to 0; where s is 

non zero only for y is equal to minus L by 2, 2 y equals plus l by 2 ok. So, S is sourced 

per unit length of wire, it is confined only to the y axis; that means, it is non zero only 

when x is equal to 0 and z is equal to 0 otherwise it is 0, it is non zero only when both x 

and z are non zero therefore I have delta of x, a function that is non zero only when x is 0 

and delta was z that a function that is non zero only when z is equal to 0 and I want to 

find out the temperature at some observation point x, y, z. 

So, therefore, I need the inverse of this equation which I had told you T of x, y, z is equal 

to integral over the source point that is integral d V prime that I had in the previous 

example. The source S times delta of x, delta of z primes here; these are the source 



locations, recall that in the previous class in the previous lecture, I have k del square T 

plus S of x is equal to 0, the solution for that is integral over d V prime of S of x prime 

divided by 4 pi k into x minus x prime ok divided by 4 pi k into what is x minus x prime? 

This is going to be the distance between x and x prime, this will be square root of x 

minus x prime the whole square, plus y minus y prime the whole square, plus z minus z 

prime the whole square. So, that is the distance between the two points that is what is 

meant by the magnitude of the vector x minus x prime. So, this will be x minus x prime 

the whole square, whole square, who is taken the square root of. So, that is going to be 

the expression.  

So, x goes from minus infinity to infinity y from minus L by 2 to L by 2 and z goes from 

minus infinity to infinity. 
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So that is the extent that is the temperature field. Now we know that integral minus 

infinity to infinity d x prime, times delta of x prime, times any function of x prime is 

equal to the value of that function at x prime equals 0; that was one of the properties of 

the delta function, it is 0 everywhere except where x is equal to 0 integral is 1 and if you 

multiplied this delta function by any function sum function f of x, and you integrated 

from minus f to infinity, the delta function is non zero only at x is equal to 0, so this will 

pick out the value of the function at x is equal to 0. So, that is one of the properties of the 

delta function. 



So, in this case I have the integral over x of delta of x prime, integral over x prime of 

delta of x prime, times some function of x prime. 
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The result is going to be the value of that function at x prime is equal to 0;   the value of 

that function at x prime is equal to 0 which will be equal to minus L by 2 to L by 2 d y 

prime, integral minus infinity to infinity, d z prime, S delta of z prime divided by 4 pi k 

times the value of the function at x prime is equal to 0 x square, the value of this function 

at x prime is equal to 0. 

And then I have the second integral over z prime of delta of z prime times this function 

of z prime, once again it will pick out the value of the function at z is equal to 0.  

So, this is the expression for the temperature, but I have to integrate over the y 

coordinate over the length of this wire the y coordinate, I have to integrate this over the 

length of this wire. You can do this integral I would not go into the details of for the 

integration is done, but in the end what you will get is S times log of L by 2 plus y plus 

root of x square plus x square, plus the whole square. 

Now, this is a rather complicated expression what we can do for example, is to simplified 

by taking the value at the locations z is equal y is equal to 0 along the central plane, I will 

take the value of the temperature along the central plane at the location y is equal to 0, at 

the central plane where y is equal to 0 in that case if the temperature becomes T of x, 0, z 



is equal to S into log of L by 2 plus root of. So, this is the temperature field, we do not 

get very much physical insight from this temperature field, we can get physical inside; 

however, if we consider two limiting cases: the first is where the distance from the 

source point there is this distance is of course, square root of x square plus z square, that 

distance you could consider limiting cases where that is large compared to the length of 

the wire L and where that is small compared to the length of the wire L. 
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So, the temperature as I have written it for you is equal to 1 by 4 pi k. So, there is S by 4 

pi k and may have missed that S over here, I should have a 4 pi k in both of these that 

comes out of the 4 pi k over here into log of L by 2 plus square root of whole square. 

If we take the limit where the distance from the source x squared plus z square is much 

larger than L square the length of the wire, this distance is much larger than the length of 

the wire and I have to do a series expansion in the small parameter L by 2. I have to 

expand this entire term in the series expansion in L by 2. I will get x by 4 pi k, I divide 

both the numerator and the denominator by x square plus z square the square root of. So, 

I will get L by 2 root of x squared plus z square plus root of 1 plus whole square.  

And now I can do a series expansion because this L is much smaller than root of x 

squared plus z square. So, these numbers are small parameters compared to 1, these 

numbers are small parameters compared to 1 and if you do that you can actually neglect 

this term because it is quadratic. I get 1 plus x by 1 minus x the result of that just turns 



out to be equal to S by 4 pi k into L by root of x square plus z square; that is what I 

would get by expanding out this log function in a binomial series.  

Recall now along the plane that we had in the x z plane, along this x z plane at the wire 

was not the along the y axis, along this plane we had done an expansion where the 

distance was root of x squared plus z square, this was large compared to the extent of the 

wire L, that was the limit that we were considering. In that case we get a solution which 

is basically equal to the total heat generated per unit time; S was the heat generated per 

unit length per unit time of the wire. So, S times L is the heat generated per unit time 

divided by 4 pi k into this x square minus x plus z square, which is basically the distance 

from I should write this as square root my apologies, the square root of x squared plus z 

squared is basically the distance from the original that was the solution that we had got 

for the point source, Q by 4r pi k r. So, if the distance from the source point is much 

smaller larger than the extent, if this distance is much larger than this length the source 

point actually looks like a point source of source strength is tainted.  

So, as the distance from the source becomes much larger than the spatial extent of the 

source, it basically looks like a point source, that is the idea here. On the special extent is 

very large, you get back the same result that you would have got for the point source. 

You can consider the opposite limit x squared plus z square is much smaller than L 

square that is the distance from the source is much smaller if I look this in the x z plane, 

the distance here x square plus z square, square root of it is much smaller than the length 

of the wire is they are doing only a small distance compared to the length of the wire. 

In that case you have to take the opposite limit, in this expression x square plus z square 

is much smaller than L square and I need to do an expansion in the case where for x 

square plus z square by L square much smaller than 1. 

I want go through the details you can work out the expansion, what you have to do is 

rather than dividing throughout by x square plus L square here; at x square z square here 

I have to divide throughout by this L square, I have to divide throughout by this and if I 

do that I will get the temperature is equal to Q by 4 pi k log of L by root of I am sorry Q 

by 2 pi k, L by root of x square plus z square therefore, the temperature field goes as the 

logarithm of a distance, what happens when the distance is small compared to L, the wire 



effectively looks like a wire of infinite length because the distance from the wire is much 

smaller than the length of the wire.  

So, the wire effectively looks like a wire of infinite length the problem effectively 

reduces to a two dimensional problem, where in two dimensions the x and z dimensions 

you have a wire which is generating a certain amount of heat per unit length in the third 

direction. So, this is the equivalent of the delta function source the point source in two 

dimensions. The point source in two dimensions has a solution which is logarithmic in 

the radius. 

You can solve explicitly the point source in two dimensions by taking the two 

dimensional version of the equation del square T, plus Q delta of x is equal to 0. In two 

dimensions if it is x is symmetric you get 1 over r, d by d r of r partial T by partial r plus 

Q delta of x is equal to 0 the solution set for this turns out to be a logarithmic function, 

you can solve that quite easily and verifies that you will get a solution that is of this type. 

So, the two limiting cases we get the correct solutions for this case of the wire and of 

course, this can be generalized in this case we took a two dimensional wires you can take 

a surface or you can take a volumetric object, for all of these you will get solutions just 

by inverting this equation, this may taking the inverse of this equation, the inverse of this 

equation the differential equation is basically the this integral equation and we saw that 

by going by expressing it first as a point source and then generalizing it to a volumetric 

source. 

We will see a little bit more about this what do you do this was all in infinite domain, 

what do you do when there are boundaries; we look at that in the next lecture then come 

back to the original point that I had said, what do those spherical harmonic expansions 

mean that we will continue in the next lecture. I will see you then. 


