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Balance equation: Convection and diffusion dominated regimes 

 

Welcome to our continuing series of lectures on fundamentals of transport processes. In 

the previous few lectures we had derived conservation equations in different coordinate 

systems for both concentration fields as well as the momentum fields. For the 

concentration, we had actually gone through and derived the equations in some detail. 
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So, the equation was of the form partial c by partial t plus the divergence of the velocity 

times c is a dot product here is equal to D times the Laplacian of the concentration and 

for the energy equation, you will get a similar equation where alpha is the thermal 

conductivity and both of these are valid when the diffusion coefficient or the thermal 

conductivity and the specific heat are independent of position. All of these have a 

common structure, there is the divergence of the velocity times the concentration of the 

velocity times the temperature on the left side and there is a Laplacian of the 

concentration, the Laplacian of the temperature on the right side. 

For momentum conservation equation, there were two equations because we have to 

write an equation for the total mass. The total mass equation was of the form the 



divergence of the velocity is equal to 0 and the momentum conservation equation was of 

the form; I should note that, if the fluid is incompressible these terms here is the blue 

terms can be alternately written, I can write down del dot u c is equal to differentiating 

using chain rule; u dot the gradient of the concentration plus concentration divergence of 

velocity and if the fluid is incompressible because of this mass conservation condition, 

the second term is 0.  

Therefore, I can alternately write for incompressible fluids alone I can alternately write 

the concentration and the temperature equation as; written in this form the equation is 

exactly the same as the momentum conservation equation except as I said that I have this 

additional pressure gradient. Here this momentum conservation equation is for the three 

vector components of the momentum. So, there are three equations in here included 

within this one vector equation, I can take the three components of the velocity as u x, u 

y, u z or u r; u theta u phi and I can get the different scalar equations, for the different 

component in the different coordinate systems. 

And I defined for you, in Cartesian and in spherical coordinate system or in a spherical 

coordinate system; it is e r; d by d r plus e theta by r. So, that is the expression for the 

gradient in a Cartesian coordinate system and the spherical coordinate system and the 

Laplacian was of the form; d square by d x square or in a spherical coordinate system, 1 

by r square d by d r of r square. So, those were the operators that we had to write in 

Cartesian spherical coordinate systems, you just have to put in those operators into these 

equations to get the equations the different coordinate systems. 

Note that this divergence operator or the gradient operator has dimensions of 1 over 

length, if the divergence of the gradient operator have dimensions of 1 over length, 

Laplacian has dimensions of 1 over length square because you are taking two derivatives 

with respect to the spatial position. 
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So, now if you look at these equations and try to scale them, I have an equation of the 

form d c by d t plus, if it is incompressible u dot grad c is equal to D del square c and if I 

have some configuration; such as for example, the flow through a pipe of some diameter 

d with some velocity u; average velocity u or the flow past a spherical particle of some 

other particle the characterized dimension in this case is the particle diameter d and the 

free stream velocity far from the particle has some velocity u and of course, if I have a 

mass transfer problem, where I have concentration c infinity far away and on the surface 

I have a concentration c s, as we have been doing in other such situations in these 

problems; one can write down a scaled concentration. 

One can define the scaled velocity u star is equal to u by the characteristic velocity 

capital u which is the flow through the pipe; average velocity of the flow through the 

pipes for internal flows or flow around the object for external flows. I can also scale the 

length scales, in general I would scale the length scales as x star is equal to x by d; y star 

is equal to y by d and z star equal to z by d. Since the gradient operator has dimensions 

of inverse of length, it is d by d x times d x plus d by d y times e y plus d by d z times e 

z. Our similar expressions in other coordinate systems, I can write a scaled gradient 

operator as D times (Refer Time: 09:13) this is dimensionless because the gradient 

operator has dimensions of 1 over length.  



So, if I do that the equation is linear in the concentration field therefore, I will get partial 

c star by partial t plus I have a velocity here times d, times u star dot grad the scaled 

gradient operate and c star. So, basically since I am scaling all length by d this operator 

also gets scaled by the inverse of d. So, defined this way this time is dimensionless and 

on the right side, I have two derivatives; that means, I will get two factors of D in the 

denominator. So, I will get d by D square del star square c, when I go from c to c star I 

get this factor coming out and I change the variable from c to c star I get the factor of c s 

minus c infinity in all the derivatives, but since the equation is linear in c that cancels out 

on all terms. Now this gives me a way of scaling that time scale, the time scale for 

variation; a natural time scale in this case would be this u by d, the time scale for the 

variation. 

And if I do that; what I will get is t times u by d is now dimensionless therefore, I will 

get u by d into partial c by partial t and if I divide throughout by this factor here, what I 

will get is and this is the Peclet number for mass transfer. This is the general structure of 

the equations of motion; this is how the equations of motion generally look. 

If I were to do the same for heat transfer, I get exactly the same. So, exactly analogous I 

substitute t for c and alpha for d and what you would get is u d by alpha into partial t by 

partial t. So, this is the Peclet number for heat transfer and I could do the same for 

momentum transfer, in this case the only variable that I have is the velocity. 
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If I were to do that for momentum transfer, the equation is slightly more complicated, but 

you can scale it nevertheless. The equation is rho into partial u by partial t plus u dot grad 

u and if I define u star is equal to u by the characteristic velocity; grad star is equal to d 

times grad; t star is equal to t u by d, what I would get on the left side is going to be 

equal to rho u square by d. You can work it out, there are two factors of u here which 

gives you a factor of u square and there is one gradient which gives you 1 over t. 

So, this is partial u star by partial t star minus 1 over d, I have not yet scaled the pressure 

I will do that shortly and on the right side, I have mu; I have one factor of velocity due to 

the velocity and there are two gradients. So, that gives me a 1 over d square; so that is the 

scaled equation. Now I can divide the equation throughout by either of these coefficients, 

either the viscous coefficient or the inertial coefficient; which one you choose will 

depend upon what is dominant. For the present, I will choose to scale it by the viscous 

scale and if I do that; on the left side I get rho u d by mu; choose to scale it by the 

viscous scales. 

And of course, I can use this to scale the pressure and define p star is equal to p by mu u 

by d, then this equation the pressure term just becomes minus the gradient of the scaled 

pressure and on the left side, we have the dimensionless number, the Reynolds number 

divided by the kinematic viscosity or the momentum diffusivity. So, all of these 

equations have a common structure, on the left side you have the Peclet number or the 

Reynolds number times the time derivative and the convective terms. On the right side, 

you have the diffusive term in all of these equations one can consider two limits; one is 

where the Peclet number is very small, when it is very small diffusion is dominant and 

basically you are solving an equation which basically states the Laplacian of the 

concentration of the temperature field is equal to 0. 

In the case of the momentum conservation equation, it is a little more complicated 

because you have the pressure gradient as well and this has to be coupled with the mass 

conservation condition; del dot u is equal to 0, but in both cases the diffusion operator is 

a Laplacian operator. On the other hand in the limit where the Reynolds number or the 

Peclet number is large basically these convective terms will balance the pressure term in 

the case of the momentum equation or in the case of the mass and energy equations, the 

convective term on the left side is much larger than the diffusion term on the right side. 



So one can understand two limits; one is the diffusion dominated limit, this happens 

when the Peclet number is much small compared to 1 or when the Reynolds number is 

much smaller than 1. In that case diffusion is dominant; convection is negligible 

compared to diffusion and in that case the conservation equations for concentration or 

temperatures basically reduced to del square c is equal to 0 or del square t is equal to 0. 

So, both the concentration and the temperature field in this case have to be solutions of 

the Laplace equation. For momentum transport, it is slightly more complicated; del dot u 

is equal to 0 is the mass conservation condition and if I neglect the inertial terms in the 

limit of the Reynolds number being small, the conservation equations reduce to minus 

grad p plus. 

So, these have to be solved subject to boundary conditions, these momentum 

conservation equations they call stokes equations in the limit of low Reynolds number, in 

the limit where convection is dominant. 
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When the Peclet number is large compared to 1 or Reynolds number is large compared to 

1; I could divide the equation for example, the concentration equation throughout by the 

Peclet number. So the concentration equation if I divide by the Peclet number, I will get 

an equation of the form. So, that will be the conservation equation in the limit of high 

Peclet number for the concentration field and an analogous equation for the temperature 

field. 



In this case, you would think simplistically Peclet number is large therefore, this number 

is very small. So, I can just neglect the right side of the diffusion equation and solve an 

equation of the form partial c by partial t plus u dot grad c equals 0. You just go ahead 

and solve that to get the temperature or the concentration field, a similar equation for the 

temperature field; however, when you do that the original equation that you had was the 

second order differential equation; the highest derivative is in the diffusion term. 

Therefore, the original equation was a second order differential equation in each of the 

spatial coordinate; that means, that to completely specify the original problem. You need 

two boundary conditions in each special coordinate, if you assume Peclet number is large 

and just neglect that second order term; the equation just reduces to a first order 

differential equation along the velocity direction u dot grad, the variation along the 

direction of the velocity is first order. 

And you can no longer satisfy both boundary conditions, therefore, one cannot solve an 

equation like this and still satisfy all the boundary conditions in the original problem, you 

will end up with an inconsistency. We saw that when we were solving the oscillatory 

flow in a pipe, when you reduce the order of the equation boundary conditions can no 

longer be completely specified. That is the mathematical reason why a solution of this 

kind is not correct. Physical reason is that, this convective term transports mass or energy 

only along the direction of the fluid flow. At solid surfaces or liquid gas surfaces due to 

the no penetration condition; there is no fluid velocity perpendicular to the surface; 

therefore, transport perpendicular to the surface cannot take place due to convection. 

Transport perpendicular to the surface has to take place only due to molecular diffusion. 

Therefore, even in the limit of high Peclet number; it is still necessary to include the 

effect of diffusion within thin boundary layers close to surfaces in order to be able to 

predict what is the transport rate across those surfaces. As the Peclet number increases, 

the thickness of those boundary layers decreases, the gradients increase in such a way 

that within that boundary layer; the concentration field when scaled bothered by the 

boundary layer thickness if you scale the coordinate perpendicular to the surface by the 

boundary layer thickness, the concentration field is independent Peclet number even in 

the limit as Peclet number going to infinity. 



So what you need to do is to include the effect of diffusion very close to surfaces by 

rescaling. The distance from the surface within the boundary layer of thickness whose 

thickness is determined from the requirement that convection and diffusion have to be of 

equal magnitude within this boundary layer even as the Peclet number goes to infinity 

and the boundary layer thickness goes to 0, even as the Peclet number becomes larger 

and larger the boundary layer thickness will become smaller and smaller in such a way 

that convection and diffusion of equal magnitude within that boundary layer. So, we will 

be using similarity solutions here. 

A similar situation holds for momentum transfer; the equation if I scale it by the inertial 

scales. In this case; in contrast to what I had defined earlier in the earlier case I had 

scaled the pressure by the viscous scales. In this case vetting the limit of high Reynolds 

number, the pressure has to be actually scaled by the inertial scales. I will not go through 

the derivation, if you scale the pressure by the inertial scales and simplify the equation; 

you will get an equation of this kind. Once again in the limit of high Reynolds number, 

you would think that you can neglect this viscous term in the conservation equation; that 

is true in most of the bulk of the fluid flow. You could solve this equation without take 

into account the viscous term; however, close to the surface; the retardation of the fluid 

close to a surface near the solid surface; the velocity has to be equal to 0. 

Close to the surface, it is the stress exerted by the surface that actually slows down the 

fluid and enforces the no slip boundary condition at the surface, if we neglect it; the 

viscous term you cannot enforce the 0 tangential velocity boundary condition at the 

surface because the velocity comes to 0 because of momentum diffusion from the 

surface. So, one cannot enforce the 0 tangential velocity boundary condition, in order to 

enforce the 0 of tangential velocity boundary condition; one has to postulate a boundary 

layer once again; a momentum boundary layer close to the surface, whose thickness 

decreases as the Reynolds number increases in such a way that there is a balance 

between convection and diffusion in the limit of the Reynolds number going to infinity 

within this boundary layer. 

In this course, I will deal exclusively with mass and heat transfer. In the next lecture start 

looking at diffusion dominated transport as I said, the Laplacian of the concentration of 

the temperature is equal to 0. So, these are basically ways of solving equations for the 

Laplacian of something equal to 0 and I will go through the ways of solving that starting 



in the next lecture for diffusion dominated flows. In all these cases, whenever the 

Laplacian is equal or some function is equal to 0, the method of solution is by separation 

of variables. We had seen that for unsteady diffusion into in one dimension, similar 

procedures are applicable even for steady diffusion in multiple dimensions. 

I will first go through an example of how you solve a problem for steady diffusion in two 

dimensions using separation of variables and then we will look at separation of variables 

in a spherical coordinate system. So, that is going to be the broad program for the rest of 

this series of lectures. First how do you solve the limit of 0 Peclet number or Reynolds 

number when diffusion is dominant and then how do you solve in the limit of high Peclet 

number when convection is dominant. We will continue; we will start diffusion 

dominated flows in the next lecture, I will see you then. 


