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Unidirectional transport: Oscillatory flow in a pipe. Solution using complex 

variables 

 

Welcome to our continuing discussion of Flow in a Pipe as a part of our course on 

Fundamentals of Transport Processes. 
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I had in the previous lecture derived for you the momentum balance equation for the 

flow in a pipe. It contains the inertial term on the left, a viscous term on the right, not 

quite the second derivative but slightly more complicated because our surfaces of 

constant coordinate our curved surfaces. And there is also a pressure gradient on the 

right. The pressure gradient arises because the flow is being driven by a pressure 

difference across the ends and that pressure acts along the inward perpendicular to each 

differential volume. So, for the x momentum equation that pressure acts on the annular 

surfaces which are perpendicular to the x direction or the axial direction, whereas the 

shear stress acts at the curved surfaces where the unit normal is to the radial direction; 

this stress acts tangential to the surface. 
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We solve this first for a steady flow, and we had obtained the parabolic velocity profile 

and calculated the shear stress the average velocity the maximum velocity and so on. 

And we had got this expression for the friction factor versus Reynolds number. Friction 

factor is 16 by Re. And as I told you in the last lecture this is only for what is called a 

laminar flow, as the Reynolds number is increased at some point the flow undergoes a 

spontaneous transition to what is called a turbulent flow. 
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In the turbulent flow the fluctuating velocities are not 0, the flow is inherently unsteady. 

There are velocity fluctuations in all directions not just in the stream wise direction. And 

it is these fluid velocity fluctuations rather than the molecular velocity fluctuations that 

actually transport mass momentum and energy in a turbulent flow. And the diffusivities 

due to these fluid velocity fluctuations are actually much larger than those due to the 

molecular velocity fluctuations. 

And therefore, in the centre of the pipe the velocity that the transport takes place 

primarily due to fluid velocity fluctuations. The transport rates are much faster and that is 

why the gradient is much smaller than what you would expect for a laminar flow. The 

parabolic profile for a laminar flow near the wall of course these fluctuations have to 

decrease to 0. 

(Refer Slide Time: 03:19) 

 

And we had discussed some characteristics of the near wall variation of the velocity 

profiles. While the flows highly fluctuating has large fluctuating turbulent fluctuating 

velocities near the center these velocities have to decrease to 0 on the other wall, because 

the fluid velocity has to be 0 at the wall. Similarly, the size of those eddies has to 

decrease to 0 at the wall. And therefore, you have a thin region close to the wall called 

the viscous sub layer where the flow is viscous, laminar; the transport takes place due to 

molecular diffusion rather than due to turbulent discussion. 



Within this region the relevant parameter is the shear stress and from that we get the 

velocity scale as a friction velocity. And if I scale the velocity by the friction velocity the 

velocity gradient is just equal to 1 when the coordinate is skilled in wall units. The wall 

unit is of course the ratio of the kinematic viscosity and the friction velocity because 

these are the only two parameters that are important in this region. And I told you that 

there is also a logarithmic layer where you have a logarithmic law for the velocity 

profile. And then the logarithmic layer varies from about y plus is equal to 30 to about y 

plus is equal 200. That is the classical picture though I should warn you that this picture 

keeps getting refined in time. The viscous sub layer is about y plus b equal to 5. 

So, that was what we had seen in the last few lectures. 
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I had told you briefly how to solve the time dependent problem for the flow in a pipe. It 

was very similar to the flow down an inclined plane that we had done previously. 
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 And where we ever had last lecture was to discuss the oscillatory flow in a pipe. This of 

course has applications, and physiological flows for example the heart is constantly 

pumping in an oscillatory manner. The pressure signals from the heart of course have a 

complicated form. In this particular case we considered a very simple form for the 

pressure variation just a sine function. However, as I told you in the last lecture this is 

not a severe loss of generality because, any complicated wave form can be written as the 

sum of sine functions; the sine and cosine functions. 

So, what we had done last class was to first scale the equations. We had used the 

frequency itself for the time scale and the radius for the length scale, and when we scaled 

these equations we got an equation of this kind where the inertial term on the left is 

multiplied by a Reynolds number. And that Reynolds number is based upon the 

frequency of oscillations and the radius of the pipe. And then we had a viscous term on 

the right. In this particular case we had chosen to scale the velocity by the viscous scale. 

So, that the coefficient of this velocity u is equal to 1. And then we had this forcing term. 

So, it is a linear differential equation with an inhomogeneous forcing term. 
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And we had started to solve that; the equation itself is a partial differential equation 

which is being forced by an inhomogeneous term which is sinusoidal in time. Since this 

is a linear equation it is linear in the velocity if the forcing is sinusoidal in time one 

would expect the response as well to be sinusoidal in time. Based upon that we had 

postulated that the velocity has got to be equal to some function v times e power i t. 

Recall that in this particular case we are solving for the complex velocity, because we 

have a complex forcing function. The actual physical velocity is just going to be the real 

part of this complex velocity, because the physical forcing is the real part of this complex 

forcing function. We have written cos of t as e power i t. Cos of t is actually only the real 

part of a variety. So, we are solving this equation and we had postulated that the response 

for the velocity should also be sinusoidal in time and we had inserted it into the 

conservation equation. And of course, the factor of e power i t cancels on all the terms. I 

just get an inhomogeneous equation which is only a function of the radial coordinate; 

inhomogeneous but now a ordinary differential equation which we can solve. 

So, as I had rewritten it in the last lecture it contains an inhomogeneous term on the left 

and a term which is a function of velocity on the right. So, how do we solve an 

inhomogeneous differential equation, a linear differential equation? We separate it out 

into a general solution and a particular solution. And the general solution is one that 

follows the same differential equation, but with the inhomogeneous term set equal to 0. 



So, that is the general solution. This particular solution we had already seen in the 

context of cylindrical coordinates. The way you solve it is to multiply it both sides by r 

square. So that is going to be the differential equation just, rewritten by multiplied 

throughout by r square. 

Now you can see that on the left side the first two terms are 0 dimensions in r. So, if I 

scale r by any value is first two terms do not change. So, I can for example scale, define 

a new coordinate z is equal to root of minus i omega times r. That way, so this is just a 

new coordinate; is if I do that the first two terms do not change that last term just 

becomes z square. So, the equation now becomes z square d square v general by d z 

square plus z dv general by d z plus z square v general is equal to 0. Just by rewriting the 

independent coordinate and this is an equation we have already seen in the context of 

heat transfer and cylindrical coordinate. The solution is just of the form A J naught of z 

plus B Y naught of z; the Bessel functions. This is a Bessel equation of 0th order. Recall 

that the Bessel equation was z square d square by d z square plus z dv by d z plus z 

square minus n square v is equal to 0 In this particular equation the index n is equal to 0 

and therefore the general solution is just A times J naught of z plus B times Y naught of 

z. 

Of course I had explained in my discussion on heat transfer this function Y naught goes 

to infinity as z goes to 0. Therefore, the coefficient has to be equal to 0 and I get the 

general solution as just A times J naught of z which is root of minus i Re omega times r 

star. So, that is the general solution for this differential equation. What about the 

particular solution? The particular solution is any solution that satisfies this equation; the 

inhomogeneous equation. 
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That satisfies the inhomogeneous equation, and I just need one solution so I can just 

choose the simplest one. And the way you find out the solution is to first test there is a 

constant satisfy this equation. In this particular case a constant just does satisfy this 

equation, because if the particular solution were just equal to a constant these derivatives 

both will be 0 and I will get that v particular is equal to 1 by minus i Re. 

Note that i is the square root of minus 1. So, I can also write this as i by Re omega. So, 

this is the particular solution. The particular solution is v p is just equal to i by Re omega. 

And the total solution is the sum of these two. 
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The total solution v is equal to i by Re omega plus A J naught of root of minus i omega r 

star. We have one constant left, we had already set one constant equal to 0 in the general 

solution because we had required that the velocity has to be finite at r is equal to 0. And 

the second Bessel function y 0 did not satisfy that condition. Now we have one more 

constant and that has to be determined from the condition that at r star is equal to 1 v is 

equal to 0 the most left condition that the velocity has to be equal to 0 at r star is equal to 

1. And using that you can quite easily determine what is the solution v is equal to i by Re 

omega into 1 minus. So, that is the final solution for v. 

And the final solution for u z u x star is going to be equal to this times e power i t star. 

That is the complex velocity field, and the actual velocity field that you will see in 

practice is the real part of this complex velocity field. So, we have managed to get 

solutions for this velocity field. It is in terms of Bessel functions, nevertheless it can be 

evaluated and you can actually plot the velocity field as a function of distance and the 

radial coordinate at different points in time. 

But as you can see an expression like this does not give you very much physical insight. 

And in order to get physical insight we have to go back end and look at the equation 

consider different limiting cases and try to get solutions which will give us physical 

insight into the structure of the flow in different limiting cases. In our initial discussion I 

had said that the fundamental balance here is between viscous and inertial forces. In the 



limit when the inertial forces are small compared to the viscous forces, you get one type 

of solutions. You will (Refer Time: 17:33) where the inertial forces are large compared 

to the viscous forces you get another type of solution. 

Can we get those two solutions types of solutions in this case? So, let us go back to the 

equation and try to use some physical understanding, in order to get solutions which are 

valid in different limiting situations. 
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So, our equation was Re omega u x star by d t is equal to minus e power i t star. Or if I 

had written in terms of the function v I get only an our ordinary differential equation, I 

am sorry I should not be there; i Re omega v is equal to minus 1, if I take the limit where 

the inertial forces are small compared to the viscous forces. Note that Re omega is equal 

to rho omega square, I am sorry. This can also be written as omega R square by the 

kinematic viscosity. R square by mu is a viscous time scale, so you can write this as R 

square by mu which is a viscous time scale; time it takes for momentum diffusion across 

the radius of the pipe, times omega which is 2 pi divided by the time period of the 

oscillation. 

So, this is the physical interpretation of this Reynolds number. The viscous time scale 

divided by the period of the oscillation, the viscous time scale for momentum diffusion 

across the radius. In the low Reynolds number limit this viscous time scale is much 

smaller than the time period of the oscillation. The time it takes for momentum to diffuse 



across the radius of the pipe is much smaller than the period of the oscillation. So, at 

each instant in time the momentum is diffusing instantaneously across the entire pipe. 

So, that is the physical interpretation of the limit of low Reynolds number in this case. 

So, at low Reynolds number I have to solve just the viscous part of the equation; 1 by r d 

by dr of r d u x by dr is equal to 1; I am sorry I should put v here please cut me this 

correction. This is just equal to 1. And I can solve this, I will get v is equal to 1 by 4 r 

star square plus C 1. So, let us integrate this. I will get d by dr of r dv by dr is equal to r 

which means that r dv by dr is equal to r square by 2 plus some constant A dv by dr is 

equal to r by 2 plus A by r. Therefore, v is equal to r square by 4 plus A log r plus B. So, 

that is the solution. 
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And the requirement that the velocity has to be finite at r is equal to 0 means that a has to 

be equal to 0; v is equal to required that the slope of the velocity at r is equal to 0 dv by 

dr is equal to 0 implies that A equals 0, because A goes has a logarithmic functions 

which take the derivative it goes to infinity at r is equal to 0. And at r star is equal to 1 v 

has to be 0 the no slip condition; at r is equal to 1. This would imply that B is equal to 

minus 1 by 4. 

Therefore, my solution for v is equal to minus 1 by 4 into 1 minus r star square. You 

might recognize that this solution procedure is exactly the same procedure that we had 

used for the steady flow in a pipe. 
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If I get u x star from this, I will get minus 1 by 4 into 1 minus r star square into e power i 

t star. And if I express the velocity back in terms of dimensional variables, if you recall 

we had scaled the velocity by k by mu r square. So, if I express the velocity back in 

terms of dimensionless variables I will get minus r square by 4 mu times k into 1 minus r 

by r the whole square times e power i t star. And if I take the real part of this I will get u 

x will be equal to minus r square by 4 mu into 1 minus r by r the whole square into k cos 

of omega t. 

So, we get back the parabolic velocity profile except that instead of a steady pressure 

gradient we now have this oscillatory pressure gradient. So, at each instant in time the 

velocity profile is a parabolic profile, except that it has a pressure gradient which 

corresponds to the value of the pressure at that particular point in that oscillatory 

function. It has a negative sign because the flow is in the direction of decreasing 

pressure, and as you change the pressure the direction when cos t is 1 you will get the 

maximum velocity is parabolic then you will get slower velocity, when cos t is equal to 0 

at half way to the cycle it is 0 and it exactly reverses for the other side of the cycle. This 

is and the pressure gradient is going through an oscillatory function, this is a cos function 

so should be careful here; k cos t star is on oscillatory function. 

So, when the pressure is maximum in the positive direction the velocity has to be 

negative. At this point the velocity has to be negative because the pressure gradient is 



positive, so the velocity has to be negative. Pressure increase of downstream distance, 

whereas when it goes through the maximum negative you get this one is opposite 

parabolic velocity profile. And when it goes through 0 the velocity is also 0 throughout 

the pipe. So, you get the same solution that you got for a parabolic profile except that in 

this case the value of the pressure gradient is the instantaneous value, as it is oscillating. 

And that is not too surprising physically; the low Reynolds number limit corresponds to 

the case where the momentum diffusion time across the pipe is much smaller than the 

period of oscillation. Therefore, at each instant of time the momentum is diffusing 

instantaneously and you get the time scale for variation of pressure is much longer. So, it 

looks like at each instant of time as far as momentum diffusion is concerned you just 

have a steady pressure gradient. And that gives you a parabolic velocity profile. The 

amplitude of that velocity profile changes as the amplitude of the pressure gradient 

changes. 

So, we get back the exact same parabolic velocity profile except that it is the 

instantaneous, pressure gradient that has to be put in to this velocity profile. So that is the 

limit of low Reynolds number. However, even in the limit of low Reynolds number 

inertia should be important; even in the limit of low Reynolds number inertia could be 

important. If a Reynolds number is low, but not 0; in that case can we get an improved 

solution that includes the effects of inertia in this case. 

So, how to get an improved solution that includes the effects of inertia in the low 

Reynolds number limit? There is something that I will start my discussion in the next 

lecture. And then we will proceed to looking at obtaining a physical understanding in the 

limit of high Reynolds number in this case. So, we look first at the limit of low Reynolds 

number next lecture and then we will go on to the limit of high Reynolds number. That 

will be the program for the rest of this analysis of oscillatory pipe flows. And I will use 

that as a way of illustrating the balance between convection and diffusion. 

We will continue this lecture and then we will continue this discussion in the next 

lecture. We will see you then. 


