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Unidirectional transport: Oscillatory flow in a pipe. Solution using complex 

variables 

 

Welcome to our continuing discussion on the Flow in a Pipe. We had first solved the 

momentum balance equation for the steady flow to get a parabolic profile for the flow in 

a pipe, and I had shown you that we get the equation for the friction factor for a laminar 

flow in a pipe I had discussed qualitatively some features of transition to turbulence and 

some features of turbulent flows. 

Turbulent flows are in general difficult to describe so the simple techniques that we have 

developed here we will in general not be applicable to a turbulent flow. Despite that 

there are some gross or some broad features of the turbulent flow that can be deduced 

just from simple analysis and dimensional arguments. 
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So, I had shown you that for a turbulent flow the bulk of the flow. 
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There are velocity fluctuations in all directions, there are eddy velocity fluctuations 

correlated parcels of fluid that are in correlated motion. So therefore, a turbulent flow is 

inherently unsteady and it is inherently three dimensional. The velocity fluctuations are 

not only in the flow direction they occur in all three directions. And these velocity 

fluctuations or these correlated parcels of fluid they transfer momentum far more 

efficiently than the transport due to molecular diffusion.  

And for that reason, the transport coefficients in a turbulent flow turn out to be much 

higher than the transport coefficients in due to molecular diffusion. And for that reason 

the velocity profile is approximately flat here, because the transport takes place very fast. 

As you go close to the wall the turbulent velocity fluctuations have to decrease to 0, 

because the fluid velocity has to be equal to 0 at the wall. Therefore, as you go too close 

to the wall the turbulent velocity fluctuations have to decrease to 0. The length scale of 

these fluctuations also has to decrease to 0, because a regional correlated motion cannot 

have a size larger than the distance from the wall, because the velocity has to be 0 at the 

wall. 

And because of that the diffusivity due to the turbulent fluctuations decreases to 0 as you 

go close to the wall, because both the magnitude of the velocity is decrease and the 

length scale decreases. And therefore, close to the wall you have a region called the 

viscous sub layer within which the flow is dominated by viscosity. You do not have 



turbulent diffusion. In this region, the characteristic velocity scale is obtained from the 

wall shear stress, because you have the region is a very thin region and you can consider 

the shear stress to be approximately a constant across that region that constant is equal to 

the wall shear stress. 

From that we managed to get a friction velocity and a length scale, the wall unit. Wall 

unit based upon the kinematic viscosity and the friction velocity of the wall. So, close to 

the wall when you express the velocity in terms of the friction velocity and the distance 

from the wall in wall units you just get a linear profile u x plus is equal to y plus. Since 

the wall shear stress is much higher than what it would have been for a laminar flow, I 

said that the turbulent diffusivity is much higher, so the rate of transport to the wall is 

much higher than what it would have been for a laminar flow, Therefore, the slope near 

the wall is higher then what it will have been for a laminar flow. 

That is the reason that close to the wall the gradient of the velocity is higher than what 

you would get for any current laminar flow. And therefore, the shear stress is also higher 

because the shear stress is the viscosity times the velocity gradient. And beyond this 

viscous sub layer you have a region called the logarithmic layer where the velocity 

profile is logarithmic in the distance from the wall. Then beyond that there is the bulk of 

the flow. 
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I said we will start a discussion on oscillatory flows in this lecture. I briefly told you how 

to get the solution for the startup of the flow in a pipe. 
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And in this lecture we will talk about an Oscillatory flow. So, have a pipe and I have a 

pressure difference across this pipe across this length L and this pressure difference is an 

oscillatory function; delta p by L as a function of time if I plot that if plot the special 

difference is a function of time it is an oscillating function. So, I will approximate delta p 

by L as some function cos some constant k times cos of omega t; where this time period 

is 2 pi by omega, omega is the frequency of the oscillation. 

So, I am approximating this pressure gradient as a sinusoidal pressure gradient with one 

frequency. It turns out that you can solve the problem for any gentle shape because any 

waveform we know can be expressed as the sum sine functions. So, if you have any 

arbitrary periodic waveform; this periodic waveform can always be written as the sum of 

sine functions of different frequencies. So, if I solve it for one particular sine function I 

can get a solution for arbitrary periodic wave forms by just adding up the solutions due 

to the different sine functions that comprise this periodic waveform by just adding up the 

sine functions that comprise this periodic waveform. I will come back and discuss that a 

little later. 

So, the point I am making is that considering a sinusoidal profile is not a loss of 

generality, any waveform can be expressed in terms of sinusoidal profiles. So, for now 



we will consider a sinusoidal profile. Momentum conservation equation for this case, so 

this is x this is r rho d u x by dt is equal to mu by r t by dr minus dp by dx minus k cos 

omega t. So, that is the momentum conservation equation. And I have the boundary 

conditions at r is equal to capital R u x is equal to 0 and at r is equal to 0 d u x by dr is 

equal to 0. The symmetry condition there because there is no physical boundary at the 

location r is equal to 0. 

So, how do we solve this equation? It helps first to scale the equation; I can scale the 

equation the radial distance r star equal to r by capital R. And what about the frequent 

that the time scale; I already know that omega t is dimensionless, therefore I can scale 

define a scaled time t star is equal to omega t. What do I scale the velocity by; it is not 

yet clear at the present juncture what would I scale the velocity by. So, if I do it in this 

fashion if at scale omega t s t star the equation that I will get is rho omega partial u x by 

partial t is equal to mu by r square. I have two derivatives with respect to r in this 

equation, so I will get mu by r square 1 by r star t by dr star of minus k cos t star, because 

omega t was equal to t star so you just get k cos t star over here. 

Now, I can divide this entire equation by this pressure gradient k, because delta p by L 

the amplitude of that pressure gradient is k. So, I can divide throughout by k. So, I will 

get rho omega by k partial u x the t star that is equal to mu by R square k minus cos of t 

star. Once I have divided throughout by k, this term here is dimensionless that means, 

that all the other terms in the equation are also dimensionless, because in an equation all 

terms have to have the same dimension. So, one term is dimensionless it means that all 

the other terms are also dimensionless. So, I can scale the velocity now in one of two 

ways. 
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The first way is to scale it by the viscous scales. The other way is to scale it by the 

inertial scale. Which one do we choose? That of course depends upon whether in the 

problem the ratio of inertia to viscosity is large or small, and we do not yet know what is 

the ratio of inertia to viscosity so for the moment we will just scale it by a viscous scale. 

So, we will define u x star is equal to u x mu by R square k. I will define u x star is equal 

to u x mu by r square k which means that q x is equal to R square k u x star put, that into 

the conservation equation. So, the first term I get rho omega by k into r square k by mu 

into partial u x star by partial t star. 

Since, I scaled by the viscous scale on the right side I will just get 1 by r d by dr of r the 

d u x by dr minus cos of t. And in this first term here k cancels out; therefore this 

becomes rho omega r square by mu that is the coefficient. This is a Reynolds number 

based upon the frequency of oscillations and the radius of the pipe. So, this is the 

conservation equation which contains just one dimensionless parameter, Reynolds 

number based upon the frequency of oscillations and the radius of the pipe. 

Now, how do we solve this equation? So, the equation is will formed Re omega partial u 

x by partial t is equal to 1 by r p by dr of r partial u x by partial r minus cos of t. This is a 

partial differential equation it contains functions of both its function of both time and 

radius, it is an inhomogeneous partial differential equation, it is an oscillatory so the 

velocity exactly repeats itself after each cycle. 
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Now, how do we solve this equation? The simplest way to solve this equation if you 

recall I had my equation was of the form Re omega partial u x by partial t is equal to 

minus cos of t star. This cost t it is the real part of e power i t. The real part of this 

function e power i t, because e power i t is cost t plus i sine t so this is the real part of e 

power i t. 

So, what I can do instead is to solve another equation. Since the inhomogeneous term in 

this equation is the real part of the inhomogeneous term in this equation, this is the 

inhomogeneous term in the momentum equation is the real part of the inhomogeneous 

term of this modified equation and the equation is linear; what that means is that the 

solution u x star will be equal to the real part of this modified equation w; will be the real 

part of the solution for this modified equation. Note that this is a linear equation, the real 

part of the inhomogeneous term for this modified equation; the real part of this 

inhomogeneous term is the inhomogeneous term for the momentum equation. So, the 

real part of the solution of this w for this modified equation will be the solution for u x. 

So, that is always guaranteed in the theory of complex variables. I should not hear that i 

is equal to square root of minus 1 and e power i t can be written as cos t plus i sine t. 

Therefore the real part of e power i t is just the cos function which was the 

inhomogeneous term here. So, the strategy for solving is as follows: I will solve this 

equation for w, I will get a function the solution for w which will be some function of r 



and t because the inhomogeneous term is complex the solution w will also be complex. 

Once I have found the solution for w that complex function. If I take the real part of that 

complex function I will get the solution for u x so that is the idea if the real part of the 

solution for w will turn out to be the solution for u x. 

And this is always guaranteed if you have a linear equation. So, rather than writing in 

terms of w I will just write it in terms of u x itself; I will just write the equation in terms 

of u x itself partial u x by partial t is equal to 1 by r star minus e power i t star. With the 

implicit understanding that because e power i t is a complex function the solution for u x 

will also be a complex function. The real physical velocity profile will be the real part of 

this complex function with that understanding. 
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So, on this basis this, this is the equation we have to solve. Let us solve the equation with 

the inhomogeneous term becoming e power i t. How do I solve this? Since the 

inhomogeneous term is an exponential I can write the velocity u x also in terms of 

exponentials; I can write u x star is equal to some function v of r star e power i t star. 

And if I put that in to this equation you will find that this factor of e power i t star is 

common in all terms, and therefore it will cancel out. So therefore, d u x by dt is equal to 

i v of r e power i t. 

Therefore, I will get Re omega into i v of Re power i t is equal to, now when I take the 

derivative with respect to r I get only derivatives of v; therefore I will get e power i t 



coming out 1 by r d by dr of r d v by dr minus e power i t. And this factor of e power i t 

cancels out on both sides, and I will get Re omega i v of r is equal to 1 by r d by dr of r d 

v by dr minus 1. 

So, the four singles of the form a power i p and the equation is linear. If the forcing is of 

the form e power i t and the equation is linear then the response also had to have the 

same frequency. There may be a phase shift but the frequency has to be the same, 

because the forcing is at one particular frequency and the equation is linear equation with 

that forcing then the response also has to have that same frequency and for that reason 

we were able to write down the velocity in this form here. 

And now this equation that results it is only a function r there is no time dependence in 

this equation, and that is the basic simplification here. I had said originally that we are 

solving partial differential equations they are functions of space and functions of time. 

And there is no standard method for solving partial differential equations; we have to use 

physical insight into to reduce them to ordinary differential equations. We had seen two 

such procedures: one was the similarity solution where there was a deficit of dimensions 

and therefore we were able to reduce the equation to an ordinary differential equation, by 

n defying the similarity variable as z by root alpha t or r by root alpha t against the case 

may be. 

The second was separation of variables, where we wrote it in terms of the product of a 

function of position and a function of time. And use separations of variables to get those 

solutions individually add them up and then determine the coefficients from the 

inhomogeneous term. This is the third such method. In the case of oscillatory flows you 

know that if the forcing is at one particular frequency the response also has to be at that 

same frequency. And therefore, if I express the time dependence, in this particular case 

the velocity is a function of r and t the velocity is a function of position and time. If I 

express that time dependence as sinusoidal time dependence and I put it back into the 

equation I get an equation that is only in the spatial coordinate; it is an ordinary 

differential equation. 

So, I can simplify this equation a little bit what I get is that d square v by, let me do it in 

steps; I can take the inhomogeneous term to the left side I will get 1 is equal to 1 by r d 

by dr of r d v by dr minus i Re omega v. Or my equation becomes 1 is equal to d squared 



v by t r square plus 1 by r d v by dr minus i Re omega v. This is an inhomogeneous 

equation it is an inhomogeneous equation for the solution v. So therefore, I can write the 

solution v for v as the sum of two parts; the general solution plus the particular solution. 

The general solution is the solution of the homogenous equation. The homogenous 

equation in this case is the equation with the inhomogeneous term z equal to 0. So, the 

homogenous equation is d square v minus i Re omega p is equal to 0. And the particular 

solution is any one solution of this inhomogeneous equation; it can be any one solution 

of this inhomogeneous equation. 

We will continue this solving this equation in the next lecture. Kindly go through the 

solution of inhomogeneous linear differential equations, ordinary differential equations, 

how do you separate it out into the homogenous solution and the particular integral, and 

how do you add up the two in order to get the final solution. So, I will continue the 

solution of this equation in the next lecture. 

So, far what we have done for this oscillatory flow in a partial differential equation and 

based upon some physical insight we had reduced it to an ordinary differential equation; 

a function of the radius r times e power i t. And we have to find out this complex 

function of r. So, once I find out the solution for r and multiplied by e power i t take the 

real part that is going to be the solution for my velocity profile. This I will continue in 

the next lecture. I will see you then. 


