
Transport Processes I: Heat and Mass Transfer 

Prof. V. Kumaran 

Department of Chemical Engineering 

Indian Institute of Science, Bangalore 

 

Lecture - 39 

Unidirectional transport: Laminar and turbulent flow in a pipe 

 

In the last lecture we were looking at a pipe flow which is an important prototypical 

velocity profile that we encounter. If you recall we had done the momentum balance for 

a cylindrical shell in the pipe flow in the last lecture and we had got a balanced equation 

and that balance equation was of the following form. 
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So just to write it once again; rho d u x by dt is equal to mu into 1 by r d by d r of r minus 

dp by dx. So, that was the balanced equation that we had got this slightly more 

complicated form of the operators because we considering the cylindrical volume. We 

got a similar equation for the concentration and the temperature fields, but without this 

additional term here without this additional term. This additional term is the pressure 

gradient the pressure difference between the two ends of the differential volume divided 

by the distance. 

And when we solved momentum transport problems we had got an equation of the kind 

rho partial u x by partial t is equal to mu 1 by r d by d r. Without a pressure but with 

body forces we had got plus f x, where f x is the body force density force per unit 



volume along the x direction. So, the point I am trying to make here is that the pressure 

gradient acts exactly the same as a force density. The negative of the pressure gradient in 

the x direction is equal to the force density. The negative of the pressure gradient is the 

excess force that is exerted in the plus x direction; that is analogous to a force density. 

I could have got the same velocity profile if the pipe had been vertical and I had a body 

force it was rho times g the gravitational acceleration. So, the velocity profile that you 

get from a pressure gradient is the same that you would have got from a body force, the 

pressure gradient is just equal to the body force density. So, that is primarily the role that 

pressure gradient plays in momentum transfer it attacks it exerts an additional body force 

density per unit volume. 
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So, in this case I have solved the equations got a parabolic velocity profile, if you recall 

here the parabolic velocity profile for that we had calculated the mean velocity, the 

maximum velocity, the shear stress. The velocity profile itself was parabolic as shown 

here. The shear stress turned out to be linear, the shear stress was 0 at the center, the 

shear stress is proportional to dp by dx times r by 2, so it was 0 at the center increased 

linearly towards the wall the slope was the same on both sides. 

And from that we had got the expression for the friction factor there is a function of a 

Reynolds number. Laminar flow we saw that it was 16 by Re. At a Reynolds number of 



about 2100 there is a transition to turbulent. And the laminar flow is no longer observed, 

and I would explain to you what that transition means the previous lecture. 
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Even though the laminar flow is a solution of the momentum equation at all Reynolds 

numbers it is not a stable solution. Below a Reynolds number of about 2100 it is stable, 

so that if you put a small perturbation the system actually comes back to its original state. 

Above 2100 it put the perturbation and if that perturbation is sufficiently large in 

amplitude the system does not come back to its original state. And that is what causes the 

transition to a turbulent flow. 

The turbulent flow is not steady, there our velocity fluctuations at every location in all 

three directions. In a laminar flow if I plot the velocity as a function of time it will be 

only along the stream wise direction and it will be equal to a constant value, there is no 

cost cross stream velocity. And therefore, in a laminar flow the flow is steady; the fluid 

fluctuating velocity is 0 even though there may be molecular fluctuating velocities. It is 

these molecular fluctuating velocities that give rise to diffusion. 

In a turbulent flow on the other hand, there is an average velocity when you average over 

time but instantaneously the velocity is fluctuating in time. It fluctuates in all directions; 

in all three directions you get a fluctuating velocity in time. So, you get a velocity a 

fluctuation superpose on the stream wise velocity and you also get fluctuations 

perpendicular to the plane of the flow. And this is because you have parcels of fluids 



called eddies which are in correlated motion moving along and across the flow so the 

flow is not steady. And therefore, one cannot write a balanced equation where one 

considers cross stream transport due to momentum diffusion alone due to the sheer stress 

alone, because there is a fluid velocity in that direction as well. And that fluid velocity is 

what transports momentum across the flow primarily. 

The velocity profile if you plot it looks flatter at the center and steeper close to the walls. 

At the walls itself the velocity has to be 0. All components of the velocity have to be 0; 

the mean velocity has to be 0 but the velocity fluctuations also have to be 0, because the 

absolute fluid velocity is 0 at the wall from the no slip condition. So, at the wall itself the 

velocity of the turbulent eddies has to decrease to 0, the velocity fluctuations have to 

decrease to 0. What that means is that if I go a small distance away from the wall the 

maximum length of the correlated turbulent fluctuation has to be equal to the distance 

from the wall itself, because you cannot have a correlated fluctuation over a larger 

distance, the velocity has to decrease to 0 at the wall. 

Now, analogous to molecular diffusion where the diffusion coefficients were equal to the 

mean free path times the root mean square molecular fluctuating velocities. In turbulent 

fluids as well one can make an analogy and in exact analogy that the diffusivities are 

proportional to the mean root mean square the turbulent fluctuating velocities. Recall the 

fluid velocity can be decomposed into a fluid mean velocity and the fluid fluctuating 

velocity in a turbulent flow. This is not the molecular fluctuating velocity; this is the 

fluid fluctuating velocity because the fluid velocity itself fluctuates in time. 

In that case one can make a loose analogy that the diffusivities will be a magnitude of the 

fluctuating velocity times a size of eddies. This goes by the name of the mixing length 

hypothesis; l in this case is the mixing length, the distance of which eddies mix the fluid, 

and v prime is a characteristic velocity of the eddies. And therefore, the turbulent 

diffusivity will scale as v prime times l. And that I told you showed you for typical 

systems the fluid fluctuating velocity is much smaller than the molecular fluctuating 

velocity; the molecular velocity fluctuations k less the speed of sound of the order of 

hundreds of meters per second in gases and about thousand meters per second in liquids. 

The fluid fluctuating velocity on the other hand is only of the order of meters a second or 

less. So, there is a difference of about two orders of magnitude, the fluid, the molecular 



velocities are two orders of magnitude larger than the fluid velocities in practical 

applications. However, the molecular length scales the mean free path is of the order of 

10 power minus 7 to 10 power minus 8 meters, so it is smaller than the system size by 

over 5 orders of magnitude. Because of that the molecular diffusion coefficients are 

much smaller than the turbulent diffusion coefficients if you define it by the mixing 

length hypothesis. 

And therefore, the transport of momentum is primarily by turbulent diffusion across the 

center of the pipe. This turbulent diffusion process is much faster than the molecular 

diffusion process, therefore the transport rates are much higher and consequently the 

friction factor is higher because from the transport rates are higher the shear stress is 

much higher. And the friction factor is much higher than that for a laminar flow where 

the transport is due to molecular diffusion. 
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However, as you compose close to the wall the turbulent fluctuating velocities have to 

decrease to 0. And as I discussed in the previous lecture very close to the wall you have a 

layer of fluid where the flow is primarily viscous because the turbulence fluctuations 

have to all decrease to 0 by the time you would come very close to the surface, the 

turbulent velocities at p 0. And the hole very close to the wall the turbulent fluctuations 

are damped out you have a region called the viscous sub layer where the flow is 

primarily viscous. What is the length scale of this viscous sub layer? It is not the 



macroscopic size the pipe diameter r because the viscous sub layer is actually confined to 

a thin layer near the wall. 

What determines the thickness of the viscous sub layer? The only quantity of relevance 

here is the shear stress in the viscous sub layer, because the shear stress as I showed you 

is a linear function of distance from the center of the pipe. However, as you approach 

close to the wall if this thickness is much smaller than the radius of the pipe the length 

scale for the shear stress is the radius. Therefore, if this thickness is much smaller than 

the radius then within this region you can consider the shear stress to be approximately a 

constant, and approximately equal to the shear stress at the wall itself. 

From that I can actually get a velocity scale; from the shear stress you can get a velocity 

scale from the shear stress it is called the friction velocity, it is based upon the wall shear 

stress; it is called the friction velocity. I get that from dimensional arguments by equating 

rho u square to the shear stress and that gives me the friction velocity as u star which is 

equal to root of tau w by rho. So, that is the relevant parameter, the relevant velocity 

scale within the viscous sub layer. Now how does one get a length scale? We know that 

within the viscous sub layer viscous effects are important, and therefore the only other 

dimensional parameter that is of importance is the kinematic viscosity. And from that 

you can get only one length scale L is equal to u by u star; where u stars the friction 

velocity. 

Therefore, I can scale the distance from the wall by this length scale. If y is the distance 

from the wall I can define a scaled distance y plus it is called the distance in wall units, 

this length scale is what is called one wall unit because it is based upon the shear stress at 

the wall and the kinematic viscosity so it is called one wall unit. And y plus is defined as 

y u star by nu. 

So, for the flow very close to the wall y plus must be the relevant length scale the total 

radius of the pipe is not. Similarly, I can define the velocity u x plus is equal to u x by u 

star, because that is the only velocity scale very close to the wall. And close to the wall 

you would expect this velocity scaled by the friction velocity to be a function of this 

distance from the wall in wall units. So that is the fundamental relation close to the wall. 

If the system is completely viscous at the wall itself there is no cross stream diffusion 

due to turbulent velocity fluctuations because they have already got damped out. And if 



the flow is purely viscous then you require that the wall shear stress has got to be equal 

to the viscosity times d u x by dy at the wall, because the flow is purely viscous. 

Or I can define by the density this is equal to nu d u x by dy close to the wall. And if I 

express this now in terms of the scaled velocities this can be written as nu u star divided 

by nu by u star d of u x by u star by d of y u start by nu. Just expressing it in terms of the 

scaled velocities and this is equal to u star square du x plus by dy plus. This is equal to 

tau w by rho. Just expressing in terms of the distance expressed in wall units and the 

velocity scaled by the friction; velocity the friction velocity is u star. But we know that u 

star square is just equal to tau w by rho. 

Therefore, very close to the wall the velocity scaled velocity u x plus by dy plus should 

be equal to 1, because I have used the wall shear stress to scale the velocity therefore d u 

x plus by dy plus has to be equal to 1. And this implies that very close to the wall u x 

plus is just equal to y plus the distance in wall units in the viscous sub layer. 

Experimental studies show that this law is applicable approximately up to about y plus of 

about 30; y plus less than 10 you see a linear velocity profile. So, y plus less than 10 you 

will see a linear velocity profile. 

Within this viscous sub layer this linear law applies the only thing is that I have to define 

the velocity in terms of the friction velocity rather than the mean flow velocity. Now the 

turbulent flows of course when the distance is comparable to the radius of the pipe in 

between the two in experiments it is found that there is what is called a logarithmic layer. 

This logarithmic layer can be justified on the basis of matched asymptotic analysis which 

I will not have time to go through in this course; this can be justified on the basis of 

matched asymptotic analysis. 

But, within the logarithmic layer this goes has a logarithm of the velocity; this goes as a 

log of the velocity. So, if I express u x plus is equal to A log y plus plus B. There is a 

logarithmic region where the velocity profile basically goes logarithmicly. And then near 

the center of the pipe it becomes nearly flat. This logarithmic layer varies from y plus 

about 30 to 200 is the classical conventional wisdom, this is called the one common law 

for the logarithmic velocity profile in this logarithmic layer. 

I should note that this is an area where there is a lot of current research, and these limits 

are currently being questioned as to whether they are actually applicable or not based 



upon experiments in very large you know systems. However, this law is just a 

dimensional necessity; the viscous sub layer does exist beyond that is a logarithmic 

layer. The logarithmic layer can be justified on the basis of matched asymptotic 

expansions, where these constants are available by fitting experimental data to these 

logarithmic profiles. And these constants there are questions whether they are universal 

or whether they depend on geometry whether they tend to the same limit as the pipe 

diameter goes to becomes larger and larger whether it is a pipe or a channel so on. But, 

conventionally this is approximately between y plus of about 30 and 200 you have a 

logarithmic layer beyond that you have the parabolic velocity profile. 

So, that is the structure of the flow near the wall of the pipe, the flow is entirely viscous 

very close logarithmic. And then you have the central region where the transport is 

primarily due to turbulent diffusion due to the costume mixing due to eddies. And within 

the region since it is very well mixed the velocity is approximately a constant. Similarly, 

for momentum and the mass and heat transfer the concentration or the temperature will 

be approximately a constant in that central region. And in that central therefore most of 

the transport takes place across this logarithmic layer and the viscous sub layer close to 

the wall of the pipe. It is well mixed in the bulk of the flow the turbulent mixing is a 

dominant mechanism for momentum transfer. 

So, this is a brief summary of turbulent flows; as I said we are not able to do this 

analytically because the flow is not three dimensional. We have so far looked only at 

transport in one direction; we have not yet looked at three dimensional flows. We have 

also not looked at unsteady flows; we focus primarily on steady flows in this case. That 

does give us what is the laminar velocity profile, it does not give us the turbulent velocity 

profile. But there are some broad features of the turbulent velocity profile that can be 

deduced just on simple reasoning. 

The largest eddies have to be comparable to the size of the pipe. The velocity 

fluctuations are comparable, they are smaller but they are comparable to the mean flow 

velocity. And this turbulent eddies that are primarily responsible for the cross stream 

transport. As you come close to the wall the velocity has to be equal to 0 at the wall itself 

so the velocity has to be damped out, the fluctuations have to be damped out by the time 

you come close to the wall. Very close to the wall there is a layer or which viscous forces 

are dominant. And across this layer the wall shear stress is approximately a constant; 



from that wall shear stress I got only the friction velocity as a dimensional parameter and 

based upon that friction velocity I can define a velocity profile close to the wall. 

Note that this friction velocity is not the mean velocity; this comes out from the wall 

shear stress and the density. However, if I define the velocity in terms the friction 

velocity and the distance from the wall in terms of wall units in terms of wall units then 

the velocity profile close to the wall is just a linear profile with a slope equal to 1 within 

this viscous sub layer. As I said this viscous sub layer it is valid only when this y plus is 

much less than about 30 or so gives the limits are you variously given as 5 10 and so on. 

A conservative limit would be to consider this as just equal to 5 but I said these limits are 

still under active research. 

So, y plus less than about 5 is a good conservative limit when the velocity profile is 

linear. Y plus going from about 30 to 200 the velocity profile obeys another law a 

logarithmic law. In this particular case the distance from the wall is still measured in wall 

units. The velocity is expressed in terms of the friction velocity; you get a logarithmic 

function with constants. These are called the one carbon constants. And depending upon 

the configuration these turn out to be universal constants. In particular the constant A is 

approximately about 2.5, and this is for a smooth pipe and then it will change the 

depending upon the roughness of the pipe these constants could change as well. 

So, that is the broad summary of the features of the turbulent flow in a pipe. So, we 

looked at steady flows, laminar flow this steady; turbulent flow is not steady, but on 

average it was a steady flow with an average velocity profile which has these features. 
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Next we will look at time dependent flows. One can look at two different kinds of 

situations: one is the unsteady flow, the flow that the time required for the flow to 

become steady. So, typical configuration in that case would be: this is the steady 

parabolic velocity profile; however I could consider a case where initially the fluid is 

stationary, so initially I do not have any pressure difference across the walls of the pipe. 

Initially the pressure difference is equal to 0. So that initially at t is equal to 0 u x is equal 

to 0 everywhere in the pipe. 

And then at time t is equal to 0 I apply a pressure gradient, I apply a pressure difference 

delta p across this length at time t is equal to 0. And then I watch how the velocity profile 

develops into this steady velocity profile, for the velocity increases until it reaches the 

final steady value with progression in time. So, that is the unsteady problem. The 

equation for that is of course, rho d u x by dt is equal to mu minus dp by dx. The 

boundary conditions are that at r is equal to 0, I am sorry; at the wall of the pipe at r is 

equal to 0 we have the symmetric condition and the initial condition is that at t is equal to 

0 u x is equal to 0 everywhere.  

How do you solve this problem? Separation of variables; so I need to get in this 

particular case the equation is inhomogeneous. Therefore, I need to separate out the 

velocity into a steady plus a transient velocity. You had already done that for the flow 



down inclined plane and looked at what kinds of solutions result, the exact same 

procedure has to be used in this case. 

Since I have already done it two times I will not go through it in this case again. What 

we need to do is to express the velocity as a function of a steady plus a transient part. 

And the transient part is what I already have; minus r square by 4 mu dp by dx into 1 

minus r by r the r whole square. That is the steady part. For the transient part, the total 

equation contains is inhomogeneous term; the steady equation contains the same 

inhomogeneous term. Therefore, the transient equation will be of the form rho the u x 

transient by dt is equal to mu, when I subtract out the steady equation from the total 

equation this pressure gradient will also gets subtracted out, just as the body forced at in 

that case. 

So, this is the homogenous equation subject to boundary conditions which are also 

homogeneous, sorry it r is equal to homogeneous boundary conditions. The in 

homogeneity will be at t is equal to 0 u x transient is equal to minus of the u x steady; at t 

is equal to 0 the transient part will be equal to the negative of the steady part because the 

total velocity has to be equal to 0. And therefore, you can solve this by separation of 

variables; the solutions will be in the form of Bessel functions in the radial direction and 

in the form of exponentials in time and you can get the constants using the orthogonality 

relations. So, there is a simple extension to a pipe flow of the same unsteady problem we 

had solved for the flow down an inclined plane. 

Next lecture I will start another kind of flow which is an oscillatory flow. Oscillatory 

flows are known in the physiological system for example, flows in the blood vessels are 

oscillatory in nature. How does one get a solution for an oscillatory flow? So that is 

something that I will start in the next lecture, that flow will for us illustrate how a 

competition between convection and diffusion plays an important role in momentum 

transport. So, I will start an oscillatory flow in the next lecture. I will see you then. 


