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Unidirectional transport: Friction factor for flow in a pipe 

 

Welcome back to our discussion of the Flow in a Pipe, our discussion of momentum 

transport as part of the course on Fundamentals of Transport Processes. The last class we 

were looking at the flow in a pipe, this is a flow that is used often. And in this case the 

surface is a cylindrical surface, a curved surface. And therefore, it is appropriate to use a 

cylindrical coordinate system for analyzing the flow in a pipe. 
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So, we considered a pipe of radius r across which there was a pressure difference that 

was a plane, and that difference in pressure was responsible for generating a flow in this 

pipe. This pressure difference of course, has no real analog in mass and heat transfer so it 

is specific to momentum transfer. We have done the balance equations between a surface 

at r and the surface at r plus delta r. We had written that the rate of change of momentum 

is equal to the sum of the applied forces. This momentum balance equation was done for 

the x direction; the x momentum, the stream wise momentum. 

So, in that case we have written that the rate of change of momentum between two 

instance of times separated by delta t which is basically the difference in momentum 



density times the volume is equal to the forces; there are forces exerted at this outer 

surface at r plus delta r, the inner surface at r. As well as the end caps the surfaces at x 

and x plus delta x at these surfaces, there is of course a flux of momentum coming in and 

a flux of momentum going out gives this momentum coming in through the surface 

because the fluid velocity is along the x direction. There is momentum leaving the 

surface as well on the right side because the velocities in the x direction. 

In addition to that there is a pressure force pressure. Pressure as I have told you in the 

last class is compressive; it always x inward to the surface, if the pressure is always 

acting inward to any surface, so it x along the inward unit normal to the surface, the 

inward perpendicular to the surface. Therefore, the pressure at these two end surfaces is 

what enters into the x momentum balance equation. The pressure at the curved surfaces 

is not in the x direction, so therefore this pressure does not enter into the momentum 

balance equation. What enters into the momentum balance equation is the shear stress in 

the x direction which actually x parallel to the surface. So, this is what it does not to the x 

momentum balance equation. However, at the two end surfaces the pressure is 

perpendicular to the surface and it is in the x direction, so that pressure x interns in to the 

x momentum balance equation. 

So, these were the two forces exerted: the first set at the surface at r and r plus delta r, the 

second set at the surface is at x and x plus delta x the two end surfaces. So, once we have 

written these momentum balance equations correctly it is only a matter of dividing by 

volume and taking the limit, and we end up with this momentum balance equation. This 

contains the shear stress term; this is slightly complicated because for the curved surfaces 

the surface area changes as the radius changes. And this factor of our actually takes that 

into account, because the surface area is proportional to the rate parameter which is 

proportional to the radius. 

So, that is the additional term due to the momentum due to the curvilinear coordinate 

system, and then I have a pressure gradient here a derivative of pressure with respect to 

the x direction. This appears because the pressure at the two end caps is different in the 

pressure at x and x plus delta x have to be different, because that is what is driving the 

flow. 



(Refer Slide Time: 04:48) 

 

So, I have written that momentum balance equation here and then written down 

Newton’s law of viscosity and got a balanced equation for the x momentum. 

(Refer Slide Time: 05:15) 

 

So, let me write that once again for you the total momentum conservation equation for a 

general unsteady flow has to be of the form mu by r d by dr of r d u x by dr minus dp by 

dx, so that is the momentum balance equation. First we consider and the boundary 

conditions at the surface of the pipe r is equal to r u x is equal to 0 and at r is equal to 0; 



as I will explained in the previous class we have the symmetry condition partial u x by 

partial r is equal to 0. So, those are the boundary conditions. 

And now we have to solve this; first of course we will take the steady solution. The 

steady solution the time derivative is 0, so I just get new by r d by dr of r partial u x by 

partial r is equal to dp by dx. So, that is the equation at steady state, the left side of this 

equation is equal to 0 because there is no time dependence. 

And now you can solve this, first you will get d by dr of r partial u x by partial r is equal 

to r by mu dp by dx. As I told you the pressure gradient had to be a constant is 

independent of x direction, the pressure gradient is in the independent of the x direction. 

The pressure is also independent of the radial quadrant. So, this is once again something 

that is not easily appreciated; let me just briefly tell you why. The momentum balance 

that I have written here is for the x momentum, the momentum along the flow. I could 

write the momentum balance equation perpendicular to the flow in the radial direction. 

In any direction that is perpendicular to the flow. For any direction perpendicular to the 

flow the velocity is equal to 0. For any direction that is perpendicular to the flow the 

velocity is equal to 0, because the velocity is only in the x direction. 

So, if I have to write a momentum balance equation for any direction that is 

perpendicular to the flow, the velocities are all 0 there is equivalence of all of these terms 

and the shear stresses they are all 0 because the velocity is 0. So, in any direction that is 

perpendicular to the flow I will be left only with this pressure term. In any direction that 

is perpendicular to the flow I will get an equation of this form except that all the 

velocities are 0, because the velocity is only in the x direction. Therefore, I will get only 

a pressure gradient in that direction is equal to 0. 

So, therefore, the pressure has to be a constant in any cross section perpendicular to the 

flow; that is because there is nothing to balance that pressure gradient, there is no viscous 

stress or inertial stress to balance that pressure gradient perpendicular to the flow, 

because the velocity is identically 0 perpendicular to the flow. And for that reason the 

pressure has to be a constant across the cross section. Therefore, the pressure gradient is 

also independent of the radial coordinate, therefore I can integrate. 

Integrated once and you will get r partial u x by partial r is equal to r square by 2 mu 

partial p by partial x plus some constant C 1. Simplify partial u x by partial r is equal to r 



by 2 mu partial p by partial x plus C 1 by r and integrated once more and you will get u x 

is equal to r square by 4 mu partial p by partial x plus C 1 log r plus C 2. So, for this 

steady equation the steady solution this u x is equal to r square by 4 mu partial b by 

partial x plus C 1 log r plus C 2. And the constant C 1 and C 2 have to be determined 

from the boundary conditions. 

We know that at the center d u x by dr is equal to 0 that will be true only if C 1 is equal 

to 0; at the center d u x by dr is equal to 0 that will be true only if C 1 is equal to 0. 

Therefore, this logarithmic term has to be equal to 0 because log of r in the limit as r 

goes to 0 goes to infinity. So therefore, this velocity profile if C 1 is nonzero does not 

satisfy the condition that the velocity has to be finite at the center. C 2 can be determined 

from the other boundary condition; it r is equal to capital R the velocity is equal to 0. 

And the velocity profile that satisfies both of these conditions is u x is equal to minus 1 

by 4 mu partial p by partial x into R square minus r square. 

So, that is the velocity profile which satisfies both the boundary conditions and satisfies 

the momentum balance condition. 
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Therefore, my velocity u x is equal to I can rewrite it slightly as r square by 4 mu partial 

p by partial x into 1 minus r by r the whole square; so that is the velocity profile. Note 

that you x is positive is dp by dx is negative. Basically, if the pressure at the inlet is 

greater than the pressure of the outlet the pressure gradient is negative; in case the 



pressure the inlet is greater than the pressure at the outlet the pressure gradient is 

negative, therefore u x is positive. So, the flow is from region of high pressure to a 

region of low pressure and that is the reason for this negative sin here. 

The velocity profile is parabolic in the radius. This is the reason that the velocity profile 

in the flow through a pipe is a parabolic velocity profile at steady state you get a 

parabolic velocity profile with the maximum at the center. This is for a laminar flow, it is 

a maximum at the center the velocity profile is a parabolic velocity profile. 

Now, you can calculate the shear stress, tau x r is equal to mu times partial u x by partial 

r; should be equal to minus partial p by partial x into r by 2 mu if I take the derivative, so 

they should have a positive sin here. So, let is just work it out a little bit. So, partial u x 

by partial r is equal to minus R square by 4 mu dp by dx into minus 2 r by R square, I 

take the derivative of this term here I will get minus 2 r by R square. So, there is the 

shear stress and these two will cancel out to give me plus dp by dx and this 4 and 2 will 

cancel out to give me a to hear. So, that is the expression for the shear stress. Shear stress 

is 0 at the center, because the slope of the velocity is equal to 0. However, it is nonzero at 

the wall. 
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At the wall of the pipe the shear stress tau w is equal to dp by dx into r by 2 mu; I am 

sorry there should be no viscosity there because I multiplied by this viscosity here. When 



I multiplied by this viscosity I do not get a factor of the viscosity there. That is the wall 

shear stress, I exerted on the wall of the pipe. 

One can now calculate the average velocity. The total flow rate Q is equal to integral 2 pi 

r dr from 0 to r times u x. So, how do I calculate the flow rate? So, if I have a pipe of 

radius r, I take a differential element between r and r plus delta r, the velocity u x is only 

a function of the radius. Therefore, I have to take the velocity and multiplied by the 

surface area to get the flow rate, the amount flowing per unit time. If I take the velocity 

and multiplied by the area it is a cross sectional area here. To find out the total amount 

that is crossing one particular cross section per unit time you can see that the velocity 

times the area has dimensions of volume per unit time. So, there is the flow rate. 

So, I take the velocity at one particular radius multiplied by the area which is 2 pi r times 

delta r the area is equal to the thickness of this slice times the parameter, so as 2 pi r 

times delta r and have to integrate it from 0 to r; so that gives me the total flow rate. 
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So, this will be equal to minus r square by 4 mu delta p by delta x integral 0 to r of dr 

into r into 1 minus r by r whole square, and I have an additional factor of 2 pi here 2 pi is 

just a constant. So, I have integral of r square minus r; I am sorry integral of r minus r to 

the 4. So, this will be equal to minus r square by 4 mu dp by dx times 2 pi into r square 

by 2 minus r power 4 by 4 r square between 0 and r. So, that is what I get by doing the 



integral. So, this gives me minus 2 pi r square by 4 mu into dp by dx, at 0 both of these 

terms are 0, at capital R I just have to substitute capital R here. 

So, I will basically get r square by 2 by 4; I am sorry 1 by 2 minus 1 by 4 just gives me 1 

by 4. So, that is the flow rate in this spike volume transferred per unit area per unit time. 

And the average velocity u bar the average velocity is equal to the flow rate divided by 

there a cross sectional area is equal to Q by pi r square. The average velocity is just the 

ratio of the flow rate and the cross sectional area. So, if I do that the pi is will cancel out 

and I will get minus partial p by partial x into to r square by 8 mu because one, one 

factors are square cancels out to the denominator I will just get minus partial p by partial 

x into r square by e t. So, that is the mean velocity. Therefore, the mean velocity u x bar 

is equal to minus partial p by partial x into r square by 8 mu. 

What is the maximum velocity? The maximum velocity is the velocity when r is equal to 

0 because the velocity has a maximum at the center of the pipe. So, the maximum 

velocity is the velocity at r is equal to 0; I just use u bar for the mean velocity. The 

maximum velocity is just the velocity if I substitute r is equal to 0 in this expression, the 

substitute r is equal to 0 here I will get the maximum velocity. So, this maximum 

velocity is equal to minus R square by 4 mu partial p by partial x which is just equal to 2 

times the mean velocity. So, the maximum velocity at the center of the channel is just 

equal to two times the mean velocity in this particular side flow. 

So, now that we have the flow rate, the mean velocity as well as the shear stress; we can 

now calculate what is the friction factor for a pipe flow. 
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The friction factor is equal to tau w by half rho u bar square that is how it is defined; the 

friction factor is the wall shear stress divided by half rho u bar square. Now we know 

that tau w is equal to partial p by partial x into r by 2 divided by half rho, rather than 

writing you bar square in terms of this factors here you will see that it will be convenient 

for us to write this as u bar times minus partial p by partial x r square by 8 mu. So, I am 

just writing this in this form just for convenience. One new bar I have expanded out and 

the other u bar I have just retaining as a constant. 

So here, this pressure gradient cancels out, and one factor of r will cancel out; so I will 

get mu by rho u bar r times a factor. This 1 over 2 will cancel out and I have 1 over 8, so 

I will just have a factor of 8 here. If I simplify this expression, you can see this factor of 

8 is there the factor of two cancels out in the numerator and the denominator. So, 8 mu 

by rho u bar r. If I write the radius is equal to one half the diameter of the pipe then in 

terms of this the friction factor is equal to 16 mu by rho u bar d this is equal to 16 by the 

Reynolds number. 

So, this is the friction factor versus Reynolds number correlation for the flow in a pipe. 

The friction factor was defined as the wall shear stress scaled by the inertial scale where 

I told you in the very first lecture then whenever we define friction factor it is scaled by 

the inertial skills. Therefore, we had defined the friction factor as the wall shear stress 

divided by the inertial scales. We are calculated explicitly, what is the velocity profile 



everywhere in the flow; it calculated what is the wall shear stress. And from that we had 

written down the friction factor as the ratio of the wall shear stress divided by half rho u 

square. And once I did that I got the friction factor entirely in terms of the Reynolds 

number for a laminar flow. And that expression is the expression the standard expression 

for friction factor in the pipe friction factor is equal to 16 by Reynolds number, where the 

Reynolds number was defined as rho u bar d by mu. 

It could be defined in terms of the mean velocity. And the diamond another way to 

define it is in terms of the maximum velocity and the radius. For a pipe flow these two 

definitions are the same, because the diameter is two times the radius, the mean velocity 

is one half of the maximum velocity. So, for the particular case of a pipe flow these two 

definitions of the Reynolds number coincide, it does not happen for other geometry. In 

the case of the flow in a channel for example, these two definitions will not in general 

coincide. For the particular case of a pipe flow these two definitions coincide. 

And therefore, for a pipe flow we have got the velocity profile the friction factors and if I 

plot log of friction factor versus log of Reynolds number it has a minus 1 slope in a log 

log graph and this one is 16 by Re for the pipe flow. So, this is all for what is called a 

laminar flow, where the velocity profile in the pipe consists of nice smooth streamlined. 

The velocity profile is parabolic and the fluid motion is a long straight streamlines and 

momentum diffusion across the stream lines can take place only due to; I am sorry, 

momentum transport across the stream lines can take place only due to momentum 

diffusion. So, this is the special case of a pipe flow for a laminar flow. And we know that 

a laminar flow the Reynolds number up to about 2100 the pipes the flow in a pipe is 

laminar. At some part there is a transition to a turbulent flow in that point you get 

different result. For the friction factor is function of Reynolds number a result that good 

in general depend upon the roughness of the wall of the pipe. 

So, I have got you the relation only for a laminar flow from momentum balances. For a 

pressure gradient the parabolic velocity profile across the pipe. The details of the 

velocity profile as a function of the pressure gradient. The shear stress, the wall shear 

stress, the average flow rate, the mean velocity and from the shear stress in the mean 

velocity expression we can get an expression for the friction factor; all of this is for 

laminar flow. 



I will continue a little bit on pipe flow looking a little deeper at what happens after the 

transition to turbulence. There I will not be able to do an exact calculation for you, but I 

will try to give you some idea of how a turbulent flow is different from a laminar flow 

and qualitative picture. And after that we will look at unsteady flows. So, we will 

continue this discussion of pipe flows in the next lecture. I will see you then. 


