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Lecture – 32 

Unidirectional transport: Balance laws in cylindrical co-ordinates. Unsteady heat 

conduction from a cylinder continued 

 

This is a continuing series on lectures on transport in one dimension unidirectional 

transport where we were looking at transport in a curvilinear coordinate system. 
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If we recall, we have write down balance laws for a cylindrical coordinate system, this is 

useful when we are considering transfer in a pipe for example, or an annular region; 

these are quite often used in practical applications and in these cases rather than 

defending rather complicated expression for the boundaries in the Cartesian coordinate 

system. In this particular case, if we take x and y coordinates in the plane; the boundary 

would be defined by x square plus y square is equal to r square, we could solve the 

differential equations of course, but then applying boundary conditions on a complicated 

boundary becomes the problem. It is much preferable to have the boundary as a surface 

of constant coordinate.  

Therefore, we had chosen curvilinear coordinate system; a cylindrical coordinate system 

where we have two coordinates, one is the radial coordinate which is the distance from 



the axis of the cylinder and the other is the axial coordinate which is the distance along 

the axis of the cylinder. In this particular case we have first considered only variations in 

the radial coordinate and we have derived the balance equations; by doing a shell balance 

where the rate of change of energy was equal to energy n minus energy out plus any 

sources. Energies in and out the products of the flux times the surface area, in the 

Cartesian coordinate system earlier the surface area was a constant, so only the flux was 

changing. In this cylindrical coordinate system both the flux and the surface area change 

with position and for that reason the deferential operator which represents the diffusion, 

in this particular case is straightly more complicated, it is no longer just a second 

derivative with respect to the special coordinates, it has slightly more complicated 

structure to it. 

(Refer Slide Time: 02:46) 

 

We had solved the heat transfer across the wall of pipe, the study problem and we have 

got the logarithmic profile for the temperature field which is different from the linear 

profile you would expect if you had for transport cross flat surfaces. 
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And because of that we had the logarithmic average radius entering into the definition of 

the area of cross section across which the transport takes place. Strictly speaking the flux 

should be given just by this, but this coloration it is expressed in terms of the thickness 

times and average area and that logarithmic average is given by this one. 

So, that we are seen in the previous lecture and then we would doing an unsteady 

problem where initially we had a cylinder of temperature T naught which was immersed 

in the flow it in temperature T 1 and we wanted to know how the temperature varies with 

time. As I said this is the problem of particle importance; you very often in industries 

either you have metal cylinders which we want to cool in water or you have cylinders 

such as cans of different materials which are immersed water in order to cool them and 

one would like to know the rate at which the temperature decreases with time or 

increases to the outside temperature. 

So the balance equation if we recall had the same form that I had earlier, the time 

derivative temperature is equal to thermal diffusivity; times this 1 by r; d by r of r times d 

by dr, the boundary conditions in this particular case I had only one physical boundary, 

that physical boundary was at r is equal to capital R; there was only one physical 

boundary where the temperature was specified; however, the radial coordinate goes from 

r is equal to 0 to r is equal to capital R. 



So, therefore the interval for the radial coordinate r is from 0 to capital R of course, the 

radial coordinate is the distance. So, it can go any direction we had assumed that there is 

no variation of the temperature with respect to the angle around the axis, we will come 

back to cases where we have considered variation, but in this case there is no variation 

with respect to angle around the axis. So, in this case they interval for r is from 0 to 

capital R; that means, that there is a boundary at r is equal to 0 imposed by the coordinate 

system itself because we have taken the origin that r is equal to 0.  

So, the interval is from r is equal to 0 to capital R and that r is equal to 0, there is no 

physical boundary; however, there is symmetric condition as I had explained to you; it is 

only if the slope of this temperature curve at r is equal to 0 is equal to 0 that the 

temperature will be continues if you take it from the right side or from the left side; that 

means, the derivative has to be 0; however, you will have a difference in the derivative 

from the right to the left side; that means, the derivative cannot be uniquely defined at r 

is equal to 0. So as long as there is no physical boundary at r is equal to 0, the boundary 

condition has to come out of symmetry and that symmetric condition as I showed you is 

equal to that the temperature derivative was equal to 0 at r is equal to 0. 

So, we had defined r star is equal to r by R; that was the scaled radius and defined in 

terms of r star, we find that at r star is equal to 1; t is equal to T 1. The temperature that is 

imposed on this outer boundary, k t is equal to T 1 and at r star is equal to 0 right dT by 

dr was is equal to 0. So, that was the temperature I should actually use of partial 

derivative here this because the temperature or function of both time and position and at 

T is equal to 0 for all r; the temperature was equal to T naught that is the initial 

temperature of this cylinder. So, how does the temperature scale I had gone through that 

in the previous lecture, what is it that you would expect the temperature to be in the limit 

of long time. 

As T goes infinity, the temperature of the cylinder should be uniform; it should be equal 

to T 1 because that is the surface temperature. So, the long time limit the temperature 

entire cylinder should be equal to T 1. So, it is preferable to define the departure from 

that T 1 as the scale temperature, therefore we have defined T star is equal to t minus T 1 

by T naught minus T 1. 



So, this is equal to 0 in the long time limit at all r because the temperature everywhere 

would have equilibrated to T 1. So; that means, that r star is equal to 1, the scale 

temperature T star is equal to 0 and the r star is equal to 0; partial T star by partial r star 

is equal to 0. At T is equal to 0, for all r; the temperature is equal to T naught which 

means that T star is equal to 1. If I have to define my scale temperature as T star is equal 

to T minus T 1 by T naught minus T 1, so those are the equations and the boundary 

conditions. 
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So, my differential equation partial T by partial t is equal to alpha 1 by r. At r is equal to 

R; t is equal to T 1, r is equal to 0; partial t by partial r is equal to 0 and at t is equal to 0 t 

is equal to T naught for r less than R; it defined the scaled variables, r star is equal to r by 

R and T star is equal to T minus T 1 by. So, this became at r star is equal to 1, T star is 

equal to 0; r star is equal to 0, partial t by partial r is equal to 0. Once I scale it this way, 

you can easily verified the equation becomes of the form partial T by partial t is equal to 

alpha by R square, the equation is linear in T and therefore, it is equidimensional 

therefore, I can just straight away convert t to T star and I have two derivative susceptive 

r and they if I get 1 over r square, we have not yet scaled with time and this equation 

makes it clear what at the scale should be because if I scaled by this factor then the 

equation becomes dimensionless. 



So, therefore, I can define at time scale as t is equal to T star is equal to t times alpha by 

R square. Once again R square by alpha is the diffusion time, the time takes energy to 

defuse over the distance capital R. So, that is the natural time scale by wise to scale this 

problem, if I use that naturals times scale; I will get, written in this way this is equation is 

independent of the temperatures, the thermal defeasibility and so on. 

So, it becomes universal equation any problem that I had can be transformed into this 

just by scaling if called as what the material defeasibility and so on are and the scale this 

way the initial condition becomes that at T star is equal to 0; T star is equal to 1 for r star 

less than 1. So, therefore, I have the forcing in the initial conditions and the two 

boundary conditions set I have here for this problem are both homogeneous; this 

temperature is equal to 0 or the temperature derivative is equal to 0. So, therefore, this 

becomes an Eigen value problem which can be solved using separation of variables. 

So, back to the separation of variables procedure T of r t can be written as the product; 

some function of t and some function of r; insert that into the balance equation, what you 

get is that R of r star times partial F by partial t is equal to F of t star times 1 by r . So, 

separately write this function as a function of r time function of t insert that include 

balance equation and then divide throughout times by r times; F divide both side of the 

equations by r times F. So, you get 1 by F; divide through by R times F. Now in this 

equation, the left side is only function of time, the right side only function of position. 

So; that means, of both of these the left and right sides individually have to be equal to 

constants if that were not so then I could change the location while keeping the time a 

constant and this equality will no longer be valid. So, only way that this equality will be 

valid is if both of this the left and the right are both equal to constant. Should the 

constant be positive or negative, we have already looked at that when we with heat 

transfer in finite domain. If the constant is positive, the left side if you solve; it gives you 

a function that is exponentially increasing in time. So, it never satisfies the condition that 

as t goes infinity the T star should be equal to 0. 

So, therefore, the only way that you will get a solution that is decreasing to 0 as times 

goes to infinity, is if the left side or the right side are both the equal to negative 

constants. So, as got to be equal to negative constant; I will call that as beta square where 

beta is any number, so this has to be equal to a negative constant. With boundary 



conditions R is equal to 0 at r star is equal to 1 and partial R by partial r star equal to 0 at 

r star is equal to 0. Those just come out of this boundary condition; these are two 

homogeneous boundary conditions. So therefore for the radial variation; I have solve this 

equation, I can expand this out what I will get is d square R by dr star square plus I am 

sorry I made mistake here kindly note I should have a 1 over R that 1 over R comes with 

this term here I have 1 over r there and therefore, if I multiplied both the left and right 

sides by R; what I will get is; so, that is the equation that you will get, expand it out the 

derivative you will get d square R by d r star square plus 1 over r star, so that is the 

differential equation that has to be solved. 
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So, let me write it again the equation becomes of the form; d square R by d r star square 

plus 1 over r star subject to the boundary conditions, R is equal to 0 at r star is equal to 1 

and I can rewrite this equation by multiplying throughout by r square and I will get r 

square; partial square R. Now if I change variables into beta or r star equal to x by beta 

and the change of variables r star is equal to x by beta or beta is equal to beta times r star 

is equal to x, but I change the variable you will see that these two terms have 0 net 

dimension r; r square times the second derivative, r times the first derivative.  

So, the net dimension in r of the first two terms is equal to 0 which means that if I scale r 

by any coordinate these two terms do not actually change and I get equation form x 

square d square R by dx square plus x square r is equal to 0. Now this equation has to be 



solved in order to find out what is this function R, it turns out the there is no analytical 

solution for this equation. The solution for this equation is what is called a Bessel 

function, the Bessel equation is of the form x square, d square y by dx square plus x plus 

x square minus n square; y is equal to 0 and for that the solution is the form y is equal to 

A; Jn of x plus B Yn of x. This j and y are what are called the Bessel functions and this 

equation is called the Bessel equation and J and y are called the Bessel functions. These 

equation are solved, they are tabulated you find them standard tables these are similar to 

in the case of finite channel, we got sin in cos functions. 

Sin and cos function of course there also special function; we can plot them we know 

what the values are the different values of x, the sin and cos functions. Similarly in this 

cases as well this solution can be plotted and we know what a values of different value of 

x and y and using these we can construct solution, so instead of sin and cos functions in 

the case of in finite channel, these Bessel function from the bases set for this infinite 

channel. So, you can see that this equation correspond to the Bessel equation with n is 

equal to 0; that means, that solutions for the Bessel equation with n is equal to 0. 
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So, the solution form of Bessel function r is equal to A times J 0 of x; x is beta time r star 

plus B times; y 0 of x where x is equal to beta times r star. 

So, these are the Bessel function solution for the radial coordinate; for the function r 

which is the function of r star and of course, these solution can be plotted for example, as 



a function of x if I plot J 0 and y 0 J 0 actually has a 0 slope and then goes through 0, it 

oscillates the amplitude of the oscillation decreases and the distance between 0 also 

decreases as x increases. This is the equivalent of the sin solution that we had; the sin 

solution as well or oscillated, but it is cos in amplitude in the cylindrical coordinate 

system; this is the equivalent that sin solution. 

The other one goes to minus infinity and once again it oscillates; this is y 0 and this is J 

0. Boundary condition we required the slope of the temperature profile has to be 0 at the 

horizon; J 0 does satisfy that condition y 0 does not. So, therefore, this constant B as to 

be set equal to 0 because that solution does not satisfy the boundary condition, that at r 

star is equal to 0; d r by dr star is equal to 0. This would imply that B is equal to 0; you 

have one other condition at r star is equal to 1, R has to be equal to 0; does that condition 

require that A should be 0 because if A is equal to 0; you will get back a trivial solution, 

turns out it does not because this Bessel function goes through 0 at multiple locations, 

just like the sin function goes through 0 at multiple locations; the Bessel function also 

goes through 0 at multiple locations. 

Therefore the requirement is that J 0 of beta as to be equal to 0; therefore, beta as to have 

these discrete values and these value once again a tabulated, you can get values from 

standard tables, you can get what are the locations at which this goes through 0, this is 

about 2.40; the next one is about 5.52; the next one is at about 8.65, the next one is at 

about 11.79 and so on. So, there is discrete set of betas for which the Bessel function is 

equal to 0 at R is equal to at R star is equal to 1. 

Therefore, the valid solutions are only those values of beta, so therefore, beta is discrete; 

beta can be equal to beta 1, beta 2 etcetera that is infinite set of such solution. So, these 

are the Eigen functions and beta as the Eigen values, the discrete Eigen values. I told you 

can get homogeneous boundary conditions; you get discrete set of values and discrete set 

of Eigen function. In the previous case it was the sin functions and Eigen values for n pi, 

in this case the Eigen values are not equally spaced, but you still have discrete set of 

values. So, that is solution for R; what is the solution in time, the other equation is equal 

to minus beta square; that would implied that F is equal to e power minus beta square t 

star; once again exponential. 



Therefore, the solution for the temperature becomes A J naught of beta n r star; e power 

minus beta n square T star. A combination of the solution for the radial coordinate with 

beta having discrete values so that boundary condition that r is equal to 1 is satisfied and 

the exponential in time of course, any function with one of this discrete beta n that is 

2.45, 5.52, 8.65 etcetera; any one of these satisfies both the conditions referred to the 

valid solution, any of this discrete beta n, beta n the location at which this Bessel 

function goes through 0 satisfy the equation that was most general solution is one where 

n is equal to 1 to infinite. So, that is the most general solution for the temperature filed as 

satisfied the boundary condition in the special direction, the two homogeneous boundary 

conditions at r is equal to 0 and r is equal to 1; how do I get these constants. 

These constants A n have to be obtained from the initial condition because at T star is 

equal to 0, you know that T star is equal to 1 that is the initial condition. So, from the 

initial condition; we will satisfy, we will obtain the constants in this expression; using of 

orthogonal to relation, similar to what we have done in the previous lecture, I will 

continue this and show you how the orthogonality relation are obtained in the next 

lecture; I see you then kindly revise what is done so far, both for the flux geometry; we 

have sin functions as well as for this particular case and I will continue this in the next 

lecture we see you then. 


